Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Submersible (Drainage) Pumps

Comparison Nasosy plus WQD 8-16-1.1 F vs Aquatica 773413

Add to comparison
Nasosy plus WQD 8-16-1.1 F
Aquatica 773413
Nasosy plus WQD 8-16-1.1 FAquatica 773413
from $117.16 up to $147.32
Outdated Product
from $120.64 up to $133.00
Outdated Product
User reviews
0
0
1
0
TOP sellers
Suitable forwaste waterwaste water
Specs
Maximum performance18600 L/h21000 L/h
Maximum head18 m18 m
Pump typecentrifugalcentrifugal
Maximum immersion depth5 m
Maximum particle size30 mm35 mm
Mechanical impurities5000 g/m³
Maximum liquid temperature40 °С40 °С
pH value4 – 106.5 – 8.5
Float switch
Suction systemsingle-stagesingle-stage
Outlet size2"2"
Engine
Maximum power1100 W1100 W
Power sourceelectricelectric
Mains voltage230 V230 V
Engine typeasynchronousasynchronous
Power cord length10 m
General specs
Protection class (IP)X868
Country of originUkraineUkraine
Pump housing materialcast ironcast iron
Impeller / auger materialcast ironcast iron
Dimensions170x440 mm170x170x425 mm
Weight24 kg
Added to E-Catalognovember 2014november 2014

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Maximum immersion depth

The maximum depth at which a submersible pump can be placed without the risk of failure or breakdown. It is usually indicated for fresh water, so in fact it is advisable not to lower the pump to the maximum depth level — after all, the density of the pumped liquid may be greater, which will create off-design loads on the structure.

Maximum particle size

The largest particle size that the pump can handle without problems. This size is the main indicator that determines the purpose of the device (see above); and in general, the larger it is, the more reliable the device, the lower the risk of damage if a foreign object enters the suction line. If the risk of the appearance of too large mechanical impurities is still high, additional protection can be provided with filters or grids at the inlet. However, such a measure should be considered only as a last resort, because from constant exposure to solid particles, the grids become clogged and deformed, which can lead to both clogging of the line and filter breakthrough.

Mechanical impurities

The maximum amount of mechanical impurities in the suction water at which the pump can operate normally (of course, if the particles of these impurities do not exceed the maximum size possible for this model; see above for details). Pure water is considered to be water with an impurity content of up to 20 g per cubic meter, but in sewage, the bill can already go to tens of kilograms per cubic meter.

pH value

The pH value of the pumped liquid for which the pump is designed. This indicator describes the level of acidity of the medium, roughly speaking, how reactive it is to the “acidic” or “alkaline” side: low pH values correspond to an acidic environment, and high pH values are alkaline. Acid and alkaline have different effects on the materials used in the construction of various equipment, including pumps. Therefore, when designing parts in direct contact with the liquid, the pH level must be taken into account, and the use of the pump with unsuitable substances is not recommended — this can lead to corrosion, which affects the composition of the pumped liquid and reduces the life of the unit. However, this parameter is critical mainly for specialized models such as pumps for chemical liquids or sewage (see "Suitable for"). In ordinary water (even dirty) the pH range is not so extensive that it cannot be covered entirely.

Float switch

The presence of a float switch in the design of the unit.

The operation of such a switch is based on a sensor in the form of a float, which determines the level of the pumped liquid. At the same time, such a sensor can perform several functions at once. The main one is the protection of the pump from dry running: when the liquid level drops critically, the sensor turns off the pump, preventing air from entering the line and helping to save energy. In addition, the float can be used as an overflow sensor (warning of a critical increase in the liquid level), and in some models also as a general-level sensor (reporting the actual amount of liquid).

Power cord length

The length of the cable that supplies electricity to the pump with the appropriate type of power supply (see above). The longer the cable the farther from the socket or other power source you can install the pump. This parameter is especially important for submersible models: if the cable is too short, it will simply be impossible to lower the pump to the maximum depth provided for by its design, because ordinary extension cords cannot be immersed in water.

Protection class (IP)

An indicator that determines the degree of protection of dangerous (moving and current-carrying) parts of the hardware of the pump from adverse effects, namely solid objects and water. Since pumps, by definition, are used for pumping liquids, and many of them can normally pass quite large particles, in this case, we are talking about protection against moisture and foreign objects from outside.

The level of protection is usually indicated by a marking of the letters IP and two numbers, the first of which indicates protection against the effects of solid objects, and the second — against the ingress of water.

For the first digit, each value corresponds to the following protection values: 1 — protection against objects with a diameter of more than 50 mm (large body surfaces) 2 — against objects with a diameter of more than 12.5 mm (fingers, etc.) 3 — against objects more than 2.5 mm (most tools) 4 — against objects larger than 1 mm (virtually all tools, most wires) 5 — dust-proof (total protection against contact; dust can enter, but does not affect the operation of the device) 6 — dust-proof (case with full dust protection and contact).

For the second digit: 1 — protection against vertically falling drops of water 2 — against drops of water with a deviation of up to 15° from the vertical axis of the device 3 — against drops of water with a deviation of up to 60° from the vertical axis of the device (rain) 4 — against splashes from any direct...ion 5 — from jets from any direction 6 — from sea waves or strong water jets 7 — short-term immersion to a depth of up to 1 m (without the possibility of continuous operation in immersed mode) 8 — long-term immersion to a depth of more than 1 m (with the possibility of permanent operation) in immersed mode).

Note that in some cases one of the numbers can be replaced by the letter X — this means that official certification for the corresponding parameter has not been carried out. In pumps, X is usually put in place of the first digit, because. a high degree of moisture resistance (and for submersible models, for example, it must, by definition, correspond to 8) means a high degree of protection against solid contaminants.
Aquatica 773413 often compared