Crossover frequency
The crossover frequency provided in the speaker design.
A crossover is installed exclusively in a multi-band model (see "Number of Bands"). This is an electronic filter that ensures the division of the incoming audio signal into separate frequency ranges and directs each range to "its" set of speakers. And the crossover frequency shows where the boundary between these ranges lies. If there are more than two bands, there will be several such boundaries: for example, for a four-band system it may be specified "0.15 / 0.8 / 2.8 kHz" or "0.12 / 1 / 3.8".
In most cases, this parameter has mainly a reference value: the frequencies of the built-in crossover are selected to match the operating characteristics of the speakers installed in the speaker system.
Maximum amplifier power
The highest power rating of an amplifier that the loudspeakers can handle safely. Too much input power can damage the speakers, so when connecting, make sure that the amplifier's characteristics do not exceed the capabilities of the speakers. It is worth noting that this parameter may be slightly higher than the total nominal power of the acoustics (see below), since in this case we are only talking about the safety of the equipment, and not about the absence of distortion in the sound.
Total rated power
The total rated power of all speaker components, in other words, the sum of the powers of all speakers. As a nominal one, they usually indicate the highest average (rms) power at which acoustics can operate for a long time without overloads and damage. In this case, individual power surges can significantly exceed this value, however, it is the rated power that is the main characteristic of any speaker.
First of all, the sound volume depends on this characteristic: the more powerful the speakers, the louder the sound they can produce if there is a suitable amplifier. In addition, in passive and passive-active models, compatibility with an external amplifier also depends on the power: the output power of the “amplifier” should not exceed the power of the acoustics connected to it, otherwise overloads and even breakdowns are possible.
Detailed recommendations regarding the choice of speakers for power for a particular situation can be found in special sources. However, in general, an indicator of up to
100 W by the standards of modern acoustics is considered quite modest,
100 – 200 W — average,
200 – 300 W — above average, and the most powerful sets give out
up to 500 W or even
more.
In conclusion, we note two more nuances. Firstly, when comparing different systems according to this ch
...aracteristic, one must also take into account the sound format in which they work. In particular, if there is a subwoofer, it can account for a significant part of the total power — up to half or more. As a result, for example, a 2.1 set of 50 W with a 20-watt subwoofer at the main frequencies will not be able to pull out the same volume as a 40-watt 2.0 system: in the first case, each main channel will have only 15 watts, in the second — 20 watts. Secondly, in multichannel systems, the total power can be distributed among the channels in different proportions; so, say, two 5.1 systems with the same total power can differ markedly in front and rear balance at maximum volume.Overall frequency range
The total frequency range that the speaker is capable of reproducing. Specified from the bottom of the range in the lowest frequency component to the top of the range in the highest frequency: for example, in a 2.1 system with main speakers at 100 – 22000 Hz and a subwoofer at 20 – 150 Hz, the total value will be 20 – 22000 Hz.
The wider the frequency range — the fuller the reproduced sound, the lower the likelihood that some part of the low or high frequencies will be "cut off". It is worth noting here that the human ear perceives frequencies on average from 16 Hz to 22 kHz, and from a practical point of view, it makes no sense to provide a wider frequency range in speakers. However, quite a few models go beyond this range, sometimes quite significantly (for example, there are speakers with a range of about 10 – 50,000 Hz). Such characteristics are a kind of "side effect" of high-end acoustics, and they are usually given for advertising purposes.
Thus, the lower limit of the range in modern speakers can be within frequencies
up to 20 Hz, however, higher values \u200b\u200bare more common —
30 – 40 Hz,
40 – 50 Hz, or even
more than 70 Hz. In turn, the upper limit in most modern speakers lies in the range
19 – 22 kHz, although there are deviations both upwards (see above) and
downwards.
Inputs
Types of inputs provided in the design of the AU.
Note that the standard high-level terminal-based inputs used to connect passive acoustics to power amplifiers are not indicated in this list — their presence in the corresponding types of speakers is assumed by definition. The rest of the options could be:
— RCA. Inputs for working with analogue audio signal using
RCA connectors (this connector can be used in other interfaces, but they have their own names). Usually, they are used in active systems and are designed for a line level signal, however, in some models, RCA is intended for connection to a power amplifier. In general, this interface does not differ in noise immunity, but its capabilities are quite enough at least for home acoustics, including quite advanced ones. Note that with this connection, each audio channel requires its own connector; therefore, RCA jacks are usually installed in pairs — stereo left and right.
—
mini-Jack (3.5 mm). Standard connector for most modern portable audio equipment. The speakers are mainly used to connect similar equipment — primarily pocket media players. It uses analogue signal transmission, while the resistance to interference, like RCA, is not high, and the quality may even be lower due to the fact that both channels of stereo sound are transmitted over the same cable.
—
Jack (6.35 mm).
...A connector similar in shape to the mini-jack described above, but having a larger size; as a result, it is found mainly in stationary audio equipment, and is also used in musical instruments. 6.35 mm Jack is considered more durable and reliable than 3.5 mm mini-jack, besides, it is technically able to provide the so-called balanced connection (see below), although in fact this is rarely possible. To do this, this connector can be combined with an XLR connector (combo port), which allows you to connect one of the types of plugs of your choice.
— Balanced XLR. XLR connectors have three pins, according to the number of cable strands. They can be used to transmit a different type of signal, but in this case, an analogue balanced connection is implied. With this connection, one channel of audio is transmitted per connector, and a fairly large part of the interference that occurs during transmission is extinguished by the cable itself. The latter ensures the purity of the transmitted sound even at fairly large distances (of the order of several metres). Balanced XLR refers to professional interfaces and is found mainly in speakers of the corresponding class. Can be combined with a Jack (6.35 mm) connector (combo port), which allows you to connect one of the types of plugs of your choice.
— Balanced digital AES/EBU. A variation of the XLR interface, designed to transmit a signal in digital format. It also belongs to professional ones, uses the same connectors and cables and the same balanced transmission method, which ensures the cancellation of most interference; however, due to differences in the type of signal, it has a large bandwidth and allows even multi-channel audio to be transmitted through one connector.
— Optical. One of the varieties of the S / P-DIF standard is, along with the coaxial one described below. In this case, the signal is transmitted via a TOSLINK fibre optic cable. The main advantage of this interface is its complete insensitivity to electrical interference, while its capabilities are sufficient even to work with multi-channel audio. Among the shortcomings, it is worth noting the high price of connecting cables, as well as the need for careful handling of them.
— Coaxial. An electrical version of the S / P-DIF standard, using a coaxial cable with a “tulip” connector for signal transmission. Do not confuse this interface with the analogue RCA described above — despite the identity of the connectors, these standards are fundamentally different: "coaxial" works in digital format and even multi-channel audio can be transmitted over a single cable. Compared to optical S/P-DIF, this interface is less resistant to interference, but more reliable because electrical cables are not as delicate.
— Speakon. Professional interface used to connect the signal from the power amplifier to the speakers. It is used in the technique of the corresponding class, in particular, concert systems (see "Purpose"). Due to the features of the connectors (presence of latches, high degree of isolation) it can be used even with the most powerful amplifiers.
— USB port. The USB interface in speaker systems can have different purposes and use different types of connectors; these points should be clarified separately. So, one of the most popular formats for using this input is connecting speakers to the USB port of a PC or laptop to work as computer acoustics; models with this capability are equipped with USB Type B connectors — a characteristic square shape. Such acoustics will be useful, in particular, if the computer's specialized audio inputs are busy, out of order, or not available at all; in addition, it is often equipped with high-end built-in DACs and allows you to achieve higher sound quality than the average sound card.
There is another option — speakers with USB A inputs and built-in players that can independently play music from a flash drive or other external drive, as well as charge various gadgets like smartphones via USB.
Passive models (see "Type") are usually equipped with so-called high-level inputs designed for a signal from a power amplifier; this is a separate category of connectors installed in such models by default.Tweeter size
The diameter of the tweeter (speakers) speakers. Since size primarily affects the range of the speaker (as the diameter increases, the operating frequencies decrease), in HF components it can be quite small. More detailed information can be found in special sources.
Woofer size (LF/MF)
The diameter of the woofer or combined woofer/midrange speaker(s). The larger the speaker, the lower its operating frequencies and the more sound power it can provide. Therefore, you should pay special attention to this parameter if you want to get high-quality rich bass - especially if we are talking about an audio system without a subwoofer. More detailed information about speaker sizes can be found in special sources.
Finishing material
The material from which the cabinets of the speakers included in the speakers are made. Not only the appearance, but also the sound characteristics depend on this parameter. The most common options are:
—
MDF(Medium Density Fiberboard — medium density fibreboard). The most popular material today, found in almost all price categories. At a rather low price, MDF has good acoustic characteristics, almost as good as natural wood.
—
Tree. Wood can be classified as a premium material: it looks nicer than MDF, but in terms of acoustic properties it does not have significant advantages, but is noticeably more expensive. Because of this, this material is found mainly among high-end speakers designed for demanding users.
—
Plastic. Plastic is low cost and easy to process. Its acoustic properties are worse than those of MDF and, moreover, wood; however, this shortcoming can be easily compensated for. So such cases are very popular nowadays, they are found even in high-end speakers.
—
Metal. Most often, metal speaker cabinets are made of aluminium alloys. This provides an elegant appearance, in addition, such cases are very durable, reliable and are not afraid of scratches, dirt and moisture. On the other hand, metal is not cheap, and in some models it gives the sound a specific coloration that may not be to every
...one's liking. To eliminate this effect, various design tricks can be applied, which, again, additionally affect the cost.
Note that for systems with a subwoofer (2.1, 5.1, etc., see “Number of channels”), this parameter specifies the material of the main speakers, while the subwoofer is in most cases made of MDF.Weight
The total weight of all components of the speaker system.