In box
—
RTR (Ready to Run) — the box contains a fully configured and ready-to-run model. Such models are equipped with a battery, a remote control, and a charger.
—
ATR (almost-ready to run). The model is almost completely ready for use, but some of the elements are still missing. The list of missing components can include both a battery and a remote control or charger. All of the above components may be missing at once. Missing parts must be purchased separately. Models in the ATR package are designed for advanced users, this package allows you to choose batteries or controls based on your own needs and requirements.
— PNP. the receiver and transmitter are not included in the package, and often there is no battery. Additionally, the PNP set may not contain control equipment. Radio models in the PNP configuration are designed for professionals who often use individual electronics. Usually, the design of the model itself is collapsible, which significantly increases the maintainability of the product. Many models sold in the PNP configuration are allowed to participate in prestigious exhibitions and competitions.
— K.I.T. For the most part, only body parts are provided in the kit. The kit has a lot in common with the designer, because from such a kit it is possible to assemble various options for the body of the radio model. The KIT package includes neither radio communication mod
...ules, nor control equipment, nor electric motors. That is, the user will have to buy / manufacture all the hardware of the radio-controlled model on their own. Radio models in the KIT package are designed for advanced users. KIT kits are suitable for assembling advanced models, which are often used in prestigious exhibitions and sports competitions.Model scale
The scale allows you to estimate the overall dimensions of the model — it describes the ratio of its dimensions to the dimensions of a full-size machine of a similar type (see below). For example, the length and width of a full-sized buggy average about 4 m and 2 m, respectively; this means that for a radio-controlled model on a scale of
1:10, these parameters will be 10 times smaller — about 40 cm and 20 cm (plus or minus).
Miniature scales are considered to be
1:24 or less (
1:28 and
1:32), while in the largest scales it reaches
1:6(
1:5) — such models are not much smaller than children's cars (however, they are not intended to replace them). A small size is considered optimal for use in residential areas, a large one — in open areas. Most road models (see 'Type') are available in 1:10 scale, SUVs in
1:8, and larger scales are found in advanced internal combustion engine models (see 'Engine'). The most common scale options are
1:14,
1:16 and
1:18, which are found in both the low-cost and high-end segments.
Age
The minimum age for which this radio-controlled model is suitable. These recommendations are rather conditional, but it is still not recommended to deviate from them. "Adult"
14+ models with a lot of adjustments, moving parts and power simply will not be able to master a young rider of
preschool and maybe even
school age. At the same time, models for the younger age category (
3+,
4+,
5+) may not be interesting and boring for older children (
children 6 and
8+). It is also worth noting that radio-controlled cars are not always children's toys and there are models for modeling, racing — professional use.
Max. speed
The highest speed that the machine can develop. Usually, this parameter is indicated for certain "perfect conditions": a flat track, high-quality fuel or a full battery charge (depending on the type of engine, see above), etc. Real figures tend to be somewhat lower; however, different models can be compared with each other according to this characteristic.
High maximum speed is important primarily for "racing" cars (ring and short-course, see above); in stunt and drift models, it does not play a decisive role. Also, you should pay attention to the maximum speed values when buying an amateur model for entertainment — here you need to take into account the features of its application. For example, if the machine is intended for a 3-4 year old child as a toy in an apartment, high speed will not be an advantage, but a disadvantage (especially since the cost of the “apparatus” directly depends on its speed).
Drive
— Full. As the name implies, in such models, traction from the engine is transmitted to all 4 wheels. The main advantage of this scheme is its high cross-country ability: the machine keeps well on difficult terrain, and even getting stuck with a pair of wheels in the air is not critical for it. Also, four-wheel drive can be used for drifting (see "Appointment (class)"), although it loses a little in this role to the rear one; however, a lesser tendency to drift can be an advantage. Its main disadvantage is the rather high cost associated with the difficulties in production. In addition,
4WD vehicles tend to be less fuel efficient than "single wheel drive" vehicles.
—
Rear. Models with power transmission from the engine to the rear pair of wheels. This scheme is quite unstable and requires careful control at high speeds — if you turn too sharply, the car easily goes into a skid. On the other hand, it is precisely because of the instability that this option is considered optimal for drift racing, and the design of the rear-wheel drive is very simple, reliable and inexpensive. As a result, most non-4WD RC models use it.
—
Front. The front-wheel drive has a high degree of stability: you can only send the car into a skid intentionally (and then you need to try hard), and the withdrawal from it is extremely simple. At the same time, stability is not always a
...n advantage — for example, in drifting, it only creates additional problems. In addition, the design of such models is quite complex due to the need to combine the drive from the engines and steering on the same pair of wheels; as a result, in terms of price, reliability and ease of maintenance, they lose to rear-wheel drive. Therefore, front-wheel drive is not widely used in radio-controlled cars.Features
—
Protection against moisture. The presence of protection in the design of the machine, which prevents moisture from entering the sensitive elements of the structure and the corresponding unpleasant consequences (short circuits, corrosion, water hammer, etc.). This feature is practically mandatory for outdoor models, especially off-road types with internal combustion engines (see above). However, the specific degree of such protection differs significantly in different cases: one model can be designed, for example, for a maximum of splashes from wet asphalt or light rain, while the other will calmly survive driving through a puddle “hood-deep”. Therefore, this point should be clarified according to the official data of the manufacturer.
—
Protection against dirt. Protection to prevent dust and dirt from entering parts that require cleanliness. Similar in many respects to the water protection described above — in particular, it is very important for outdoor use and can vary significantly from model to model.
—
Centre differential. The presence in the design of the machine of a differential located between the front and rear pair of wheels and distributing torque from the engine between the front and rear axles. By definition, it is found only in models with all-wheel drive (see above). The main function of this mechanism is similar to cross-axle differe
...ntials — it allows the wheels, in this case the front and rear, to rotate at different speeds so that the chassis and tyres do not experience increased loads. A similar need arises, in particular, when cornering at low speed. In addition, the centre differential improves patency: when one of the pairs of wheels slips, it distributes the torque so that most of it falls on the wheels that retain traction.
— Metal main pair. The main pair is called two gears responsible for transmitting torque from the engine to the transmission: one of them is located on the engine shaft, the second — on the transmission shaft. This is one of the most important structural elements of the machine, which is subjected to significant loads during use. The main pairs made of metal are much stronger and more reliable than plastic ones; if you are purchasing a model for riding in difficult conditions (for example, a short course or tricks, see "Purpose (class)"), the presence of such equipment will be very desirable. At the same time, for entertainment purposes, it is rather an excess — after all, metal gears are more expensive than plastic ones.
— Anti-roll bars. The presence in the design of the machine of special devices that prevent the tipping of the structure to one side, in particular during sharp turns: during cornering, the stabilizer distributes the load on the wheels in such a way as to reduce chassis roll. However, this is not the only purpose of these parts — stabilizers of different stiffness are also a tool for distributing the grip balance between the front and rear axles. For example, if the front stabilizer is softer than the rear, the grip of the front axle will be higher, which ensures good steering, but reduces the sensitivity of the control; with a softer rear stabilizer — on the contrary. These points are described in more detail in special sources. It is worth noting that stabilizers are not a 100% guarantee against a coup — however, the likelihood of such an event is significantly reduced if they are present.
— Metal deck chassis. The deck is the basis of the chassis of the machine, the frame on which the engine, transmission and body are placed. The high strength of the deck is important for models that are subjected to significant stress during riding, for example, when used for short corsets (see "Purpose (class)"). Aluminium alloys are often used as a material for metal decks in modern cars — they combine good strength and low weight. However such materials also affect the cost of the model, respectively.
— Opening doors. Opening doors enhance the similarity of radio-controlled cars with real cars. You can put a toy driver behind the wheel of such cars in miniature, and passengers in the passenger compartment. Also, through the doors, access to the interior of the radio-controlled car is provided.
— Light effects. The presence of various lighting effects in the model: headlights, parking lights, flashing beacons (flashing lights), bottom lighting, etc. Such equipment not only makes the machine look like a real car, but also makes it more noticeable to others and reduces the likelihood of unpleasant incidents. At the same time, for advanced models, these moments do not play a key role, so lighting effects are found mainly in inexpensive entertainment cars.
— Sound effects. The presence in the model of various sound effects — for example, a horn, a siren, the sound of a powerful engine, etc.; sometimes there are even built-in melodies. To play sounds, usually, a small speaker is provided. This function is purely for entertainment purposes and is found only in simple and inexpensive models designed for the younger age group.
— Driver. A toy pilot seated behind the wheel of a radio-controlled car. The presence of a pilot allows you to give free rein to your imagination - driving a car from a distance, you can imagine that it is being driven by a little man.Battery voltage
The operating voltage of the battery supplied with the machine. For models for AA and AAA cells (see “Battery Type”), it is not indicated — the specification of these cells assumes a common voltage standard, about 1.5 V. In other cases, battery voltage data does not play a significant role in everyday use, but may be useful , if you need to pick up a charger, a spare battery or a battery to replace a damaged one, but you do not have data on the battery model (see below).
Battery capacity
The capacity of the battery supplied with the electric motor model (see "Motor"). Indicated only for variants using original batteries (see "Battery type"), measured in ampere-hours: 1 Ah corresponds to the capacity at which the battery is capable of delivering a current of 1 A for 1 hour.
The higher the capacity of the battery, the longer, usually, the “device” is able to work without recharging. However, the practical time of operation on a charge is largely determined by other characteristics of the machine — scale, purpose (see both points above), weight, model and engine power, etc. Therefore, in most cases, this parameter plays a purely reference role, and it is only possible to compare the battery capacity among themselves with machines that do not have any significant differences in other characteristics.
Operating time
The maximum time that the machine can operate on a full battery charge. This item is very conditional, since it is measured when using the model not at maximum power. But in general terms, it can tell about the battery life of the machine.