USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Radiators

Comparison Royal Thermo Indigo 500/100 10 vs Global VOX R 350/95 6

Add to comparison
Royal Thermo Indigo (500/100 10)
Global VOX R (350/95 6)
Royal Thermo Indigo 500/100 10Global VOX R 350/95 6
Outdated ProductOutdated Product
TOP sellers
Radiator typesectionalsectional
Country of originRussiaItaly
Manufacturer's warranty10 years10 years
Technical specs
Materialaluminiumaluminium
Number of sections106
Operating pressure20 bar16 bar
Max. pressure30 bar24 bar
Burst pressure100 bar48 bar
Heat transfer medium volume3.7 L2.1 L
Heat tranfer medium max. temperature110 °C110 °C
Mountingwallwall
Connectionsideside
Pipe centre distance500 mm350 mm
Connection size
1/2" /or 3/4"/
1"
Heat output2050 W
870 W /at ΔТ=70ºС/
Radiator height585 mm440 mm
Radiator width800 mm480 mm
Radiator depth100 mm95 mm
Weight14.5 kg6.72 kg
Added to E-Catalogmarch 2015february 2015

Country of origin

The country of origin of the brand.

In most cases, either the homeland of the brand or the location of the manufacturer's headquarters is indicated as the country of origin. Production facilities may well be located in another country. However, it is worth noting here that most of the national stereotypes nowadays are unfounded — the quality of products depends not so much on geography but on the characteristics of the organization of the production process in a particular company. So from this point of view, when choosing, you should focus primarily on the reputation of a particular manufacturer. It makes sense to pay attention to the country of origin of the brand if you fundamentally want (or do not want) to support a company from a certain state.

Nowadays, the production of radiators is mainly carried out by companies from such countries: England, Belarus, Belgium, Germany, Holland, Spain, Italy, China, Norway, Poland, Turkey, Ukraine, Finland, Czech Republic.

Number of sections

The number of individual sections provided in the radiator of the corresponding design (see "Type"). We are talking about the delivery set: the whole radiator is assembled from separate sections, and it is not even necessary to use them all.

The number of sections in itself does not affect the performance of the product. However, this information may be useful when assembling a radiator of a certain thermal power (see "Heat output"). So, by dividing the total heat output of this model by the number of sections, you can determine the specs of one section and calculate how many of them are needed to provide the desired heat output. However, a fairly large number of modern radiators are initially sold in one section — just so that the user can assemble the battery at his discretion. For finished products, 2 – 5 sections is considered a rather modest indicator, 6 – 10 pcs — average, 11 – 15 pcs — above average, and models for 16 – 20 sections or more can have both horizontal and vertical layouts (in the latter case, sections placed one on top of the other, like the floors of a tower).

Operating pressure

Radiator operating pressure.

This term usually means the highest pressure of the heating medium that the radiator can sustain without consequences for an indefinitely long time. Higher rates are also allowed for a short time (see "Maximum pressure"). However, the standard operating pressure in the heating system should not exceed the specs of the radiator; otherwise, the product is likely to be damaged. In general, it is believed that this indicator should be at least 2 bar higher than the actual working pressure in the system — this will give an additional margin of safety in case of emergencies.

Max. pressure

The highest heating medium pressure that the radiator is capable to sustain without consequences during short-term exposure.

This figure is always greater than the operating pressure (see above). It directly shows the resistance of the product to emergencies, primarily the water hammer. Other things being equal, higher maximum pressure means greater strength and reliability — however, such radiators are more expensive.

Burst pressure

The burst pressure of the radiator is the water pressure, upon reaching which the product will inevitably be damaged.

The main practical specs of the radiator are the working and maximum pressure (see above); it is on them that one should focus when choosing. The burst pressure is given in the description mainly for promotional purposes: other things being equal, a higher value means greater reliability and resistance to emergencies.

Heat transfer medium volume

The volume of water or other heating medium required to fill the radiator.

This information is relevant mainly when building an autonomous heating system: it is useful when calculating the total volume of heating medium in the system and related parameters. If the radiator is purchased for use in centralized heating, you can not pay much attention to its internal volume.

Pipe centre distance

The distance between the axes of the inlet and outlet manifolds of the radiator or its separate section.

The dimensions of the product and the possibility of installing the heater in specific conditions, taking into account the peculiarities of the pipe connection, directly depend on this parameter. The parameter is indicated mainly for models of traditional design - with two horizontal pipes at the top and bottom, between which vertical channels of the heat transfer are laid. The centre distance determines at least the overall height of the product, and in radiators with sideward connection (see the corresponding paragraph), it also determines the features of the organization of this connection.

As for specific values, the most common models in our time are 250 mm, 350 mm, 450 mm, 550 mm and 850 mm. Solutions for 150 mm, 400 mm, 500 mm and 700 mm are noticeably less common.

Connection size

The diameter of the thread used to connect the radiator to the heating system. Modern radiators use standard sizes — for example, 3/4" or 1/2", less often 1" and 1 1/4". This indicator must match the dimensions of the pipes, couplings and other elements directly used for connection — otherwise, at best, you will need to install adapters, and at worst, the radiator will turn out to be unusable at all.

Usually, the larger the thread diameter, the more powerful the radiator (high power requires intensive circulation of the heating medium and an appropriate throughput at the inlet and outlet).

Heat output

The rated thermal output of the radiator is the amount of heat given off to the air in normal operation.

When choosing this parameter note that the heat output will depend on the temperature difference at the inlet and outlet to the radiator, as well as on the ambient temperature. The greater the temperature difference and the colder it is around, the more intense the heating will be. Therefore, in the specs, it is customary to indicate heat transfer for certain standard conditions. In particular, the designation according to the European standard EN-442 is very popular, which assumes heating medium temperatures of +75 °С and +65 °С at the inlet and outlet, respectively, as well as an air temperature of +20 °С. Real conditions and the actual heat output of the radiator may differ; therefore, when choosing, it is best to choose a model with a certain margin and compensate for excess power with one or another regulator. As for the actual values, in the most modest models, the heat outputdoes not exceed 750 W, or even 500 W, and in the largest, this figure can reach 3.5 – 4 kW or more.

The choice for this parameter depends primarily on the size and specs of the heated space. The simplest calculation formula is as follows: at least 100 W of thermal power is required per 1 m2 of area. This formula is relevant for standard r...esidential/office premises with ceilings of 2.5 – 3 m, without problems with thermal insulation; for more specific conditions, there are more detailed calculation methods, that can be found in special sources.
Royal Thermo Indigo often compared