Dark mode
USA
Catalog   /   Tools & Gardening   /   Measuring tools   /   Spirit Levels & Angle Measurers

Comparison Stanley FatMax 0-43-636 vs Stanley FatMax 0-43-637

Add to comparison
Stanley FatMax 0-43-636
Stanley FatMax 0-43-637
Stanley FatMax 0-43-636Stanley FatMax 0-43-637
Compare prices 1Compare prices 1
TOP sellers
Typespirit levelspirit level
Materialmetalmetal
Specs
Length90 cm90 cm
Number of measuring vials33
Vials
horizontal (180°)
vertical (90°)
horizontal (180°)
vertical (90°)
Accuracy0.5 mm/m0.5 mm/m
Features
Functions
grip hole
 
grip hole
magnetic base
Added to E-Catalogaugust 2016august 2016

Functions

Scale for measuring length. Own scale for measuring length, printed on a level or other tool; Essentially a built-in line. Constantly using a level instead of a ruler does not make sense because of the bulkiness, but this function can still be useful — for example, in situations where you suddenly need to measure something, but there is no ruler at hand.

Mirror capsule. The presence of a mirror capsule in the design of the tool. Such a capsule is, in fact, a regular vertical control capsule, supplemented with a special mirror. The usual "vertical" capsule is possible only from the front (wide) side of the instrument; thus, a tool without a mirror is useless for vertical control in cramped places, the width of which is less than the width of the rib (see above). But in the presence of a mirror capsule, the level can be inserted into the slot with a narrow side, and the position of the bubble will still be visible thanks to a special slot with a mirror installed in it.

— Hole for gripping. The presence of a special slot in the design of the level, which allows you to comfortably hold it in your hands. In devices with a large length of such slots, two can be provided, for both hands. Anyway, holding by the slot is often not only more comfortable, but also more reliable than the usual outside grip.

— Magnetic base. The presence of a magnetic base in the design of the tool. Such a...base allows you to tightly “stick” to metal surfaces, which not only reduces the risk of dropping the tool, but also has a positive effect on measurement accuracy. Usually, powerful neodymium magnets are used in the design, capable of holding the level even in the “on the ceiling” position. At the same time, this function is far from always relevant, so the same model can be produced in two versions — with and without a magnetic base.

— Impact site. The ability to use the level for impact work — in other words, to knock directly on it, transferring the blow to the material under the level. This function can be very useful when laying tiles, bricks, etc. — it allows you to trim the material with the help of blows and at the same time control the quality of laying with the help of a level. Usually, the shock platform has the form of a sloping surface on one side of the level; often it is supplemented with a rubber lining that reduces wear. In the absence of such a platform, it is impossible to knock on the instrument — you can damage it.

— Digital display. The presence of a digital display in the tool design. This function is not required for classic levels — bubble capsules are enough to control the horizontal / vertical. But for a goniometer (see "Type"), the display will be useful — it affects the total cost, but provides much greater accuracy than a mechanical scale. Inclinometers, by definition, have this function. Please note that the display requires batteries of one type or another (see "Power").

— Backlight. The presence of illumination in the design of the level. It can be both for the digital display (see above) installed in the instrument, and for capsules. This feature makes level operation independent of ambient light and will be especially useful in low light conditions — by turning on the backlight, you can easily see the values in twilight or even in complete darkness.

— Extendable design. The ability to lay out the tool, increasing its working length. This feature is found mainly in "large-caliber" levels with a working length of 3 m or more. On the one hand, in some situations, such a length is indispensable from a practical point of view, while making a clumsy tool of this size does not make sense — the design would be too bulky and inconvenient to store and transport. Folding allows you to significantly reduce the length — usually, by more than a third, for example, from 320 cm to 180 cm. On the other hand, an additional mechanism adversely affects the accuracy of measurements — often when unfolded, it is lower than when folded; and as the moving parts wear and loosen, the error increases even more. Therefore, manufacturers try to do without a sliding structure as far as possible and provide it only when it is practically impossible to do without it.

— Laser pointer. The presence of a laser pointer in the tool design. This function is found exclusively in inclinometers — the laser beam plays the role of continuing the tool, increasing the working length to 20 – 30 m (see "Measurement range"). This provides many additional possibilities: for example, you can determine the attachment point of a long inclined beam by installing an inclinometer at the location of the beam base and tilting it to the required angle — a laser mark will indicate the attachment point of the upper end of the beam.