USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   Generators

Comparison Konner&Sohnen KS 4500i vs Daewoo GDA 4800i Expert

Add to comparison
Konner&Sohnen KS 4500i
Daewoo GDA 4800i Expert
Konner&Sohnen KS 4500iDaewoo GDA 4800i Expert
Outdated ProductOutdated Product
TOP sellers
Fuelpetrolpetrol
Output voltage230 B230 B
Rated power3.8 kW3.6 kW
Max. power4 kW4 kW
Alternatorinverterinverter
Alternator windingcopper
Engine
ICE type4-stroke4-stroke
Motor typeKonner&Sohnen KS 230iDaewoo Series 185
Engine size223 cm³185 cm³
Power7.6 hp6 hp
Launch typemanualmanual
Fuel consumption (75% load)2.08 L/h
1.2 L/h /at 50% load/
Fuel tank volume13 L12 L
Fuel level indicator
Motor coolingairair
Connection (sockets)
Total number of sockets22
Sockets 230 V16 A x216 A x2
General
Protection levelIP 23IP 23
Noise level96 dB
71 dB /at a distance of 7 m/
Dimensions520x440x470 mm520x410x440 mm
Weight38 kg28.5 kg
Added to E-Catalogmarch 2019december 2016

Rated power

The rated power of the generator is the highest power supply that the unit is capable of delivering without problems for an unlimited time. In the “weakest” models this figure is less than 1 kW, in the most powerful – 50 – 100 kW or even more ; and generators with welding capabilities (see below) typically have power ratings ranging from 1 – 2 kW to 8 – 10 kW.

The main rule of choice in this case is this: the rated power must not be lower than the total power consumption of the entire connected load. Otherwise, the generator simply will not be able to produce a sufficient amount of energy, or it will work with overloads. However, to determine the minimum required generator power, it is not enough to simply add up the number of watts indicated in the characteristics of each connected device - the calculation method is somewhat more complicated. Firstly, you need to take into account that only the active power of various equipment is usually indicated in watts; In addition, many AC electrical appliances consume reactive power (the "waste" power consumed by coils and capacitors when operating at that power). And the actual load on the generator depends precisely on the total power (active plus reactive), indicated in volt-amperes. There are special coefficients and formulas for its calculation.

...The second nuance is related to the power supply of devices in which the starting power (and, accordingly, the power consumption at the moment of switching on) is significantly higher than the rated one - these are mainly devices with electric motors such as vacuum cleaners, refrigerators, air conditioners, power tools, etc. You can determine the starting power by multiplying the standard power by the so-called starting coefficient. For one type of equipment it is more or less the same - for example, 1.2 - 1.3 for most power tools, 2 for a microwave, 3.5 for an air conditioner, etc.; More detailed data is available in special sources. Starting characteristics of the load are necessary, first of all, to assess the required maximum power of the generator (see below) - however, this power is not always given in the characteristics; often the manufacturer indicates only the rated power of the unit. In such cases, when calculating for equipment with a starting coefficient of more than 1, it is worth using the starting power, and not the rated power.

Also note that if there are several outlets, the specific division of the total power among them may be different. This point should be clarified separately - in particular, for specific types of sockets (for more details, see “230 V sockets”, “400 V sockets”).

Alternator winding

Copper. Copper winding is typical for advanced class generators. The copper alternator is characterized by high conductivity and low resistance. The conductivity of copper is 1.7 times higher than the conductivity of aluminium, such a winding heats up less, and compounds made of this metal endure temperature drops and vibration loads. Among the disadvantages of the copper winding, one can only note the high cost of the alternator. Otherwise, generators with copper winding have high reliability and durability.

— Aluminium. The aluminium winding of the alternator is typical for low-cost-class generators. The main advantages of aluminium are light weight and low price; otherwise, such a winding is usually inferior to copper counterparts. An oxide film is created on the surface of aluminium, it appears everywhere, even in the places of contact soldering. The oxide film undermines the contacts and does not allow the outer protective braid to securely hold the aluminium conductors.

Motor type

Model name of the engine installed in the generator. Knowing this name, you can, if necessary, find detailed data on the engine and clarify how it meets your requirements. In addition, model data may be needed for some specific tasks, including maintenance and repair.

Note that modern generators are often equipped with branded engines from famous manufacturers: Honda, John Deere, Mitsubishi, Volvo, etc. Such engines are more expensive than similar units from little-known brands, but this is offset by higher quality and/or solid warranty conditions , and in many cases, the ease of finding spare parts and additional documentation (such as manuals for special maintenance and minor repairs).

Engine size

The working volume of the engine in a gasoline or diesel generator (see "Fuel"). Theoretically, more volume usually means more power, but in fact, everything is not so clear. Firstly, the specific power strongly depends on the type of fuel, and in gasoline units, also on the type of internal combustion engine (see above). Secondly, similar engines of the same power can have different volumes, and there is a practical point here: with the same power, a larger engine consumes more fuel, but by itself it can cost less.

Power

The operating power of the engine installed in the generator. Traditionally stated in horsepower; 1 HP approximately equal to 735 watts.

First of all, the rated power of the generator directly depends on this indicator (see above): in principle, it cannot be higher than the engine power, moreover, part of the engine power is spent on heat, friction and other losses. And the smaller the difference between these capacities, the higher the efficiency of the generator and the more economical it is. However high efficiency affects the cost, but this difference can pay off with regular use due to fuel savings.

Fuel consumption (75% load)

Fuel consumption of a petrol or diesel generator when operating at half power, and for combined models - when using petrol (see "Fuel").

Fuel consumption usually increases with load. However, generator efficiency is not always linear - fuel consumption may vary disproportionately with different loads. In this case, the approximate amount of fuel consumed by the generator when operating at half power (50% of the rated power) is given. Knowing the fuel consumption and tank capacity, you can at least estimate how long one fill will last.

Fuel tank volume

The volume of the fuel tank installed in the generator.

Knowing the fuel consumption (see above) and the capacity of the tank, you can calculate the operating time on one gas station (if it is not indicated in the specifications). However, a more capacious tank is also more bulky. Therefore, manufacturers choose tanks based on the general level and "voracity" of the generator — in order to provide an acceptable operating time without a significant increase in size and weight. So in general, this parameter is more of a reference than practically significant.

As for the numbers, in low-power models, tanks are installed for 5 – 10 liters, or even less ; in heavy professional equipment, this figure can exceed 50 liters.

Noise level

The noise level produced by the generator during normal operation. The less noise the unit makes, the more comfortable it is to use, the closer it can be placed to people, but the higher its price, all other things being equal.

It is also worth considering that generators with internal combustion engines are, in principle, quite noisy equipment. So, even the “quiest” units produce up to 70 dB - this is the volume of conversation in tones from medium to high. Accordingly, it is recommended to install the device remotely from the place of use. At the same time, we note that the noise level is not directly related to power: for example, among units with 80 dB or more, there are both heavy and relatively low-power models.

Weight

The total weight of the unit - as a rule, excluding fuel; The full fill weight can be easily determined by knowing the tank capacity.

In general, more powerful generators inevitably turn out to be heavier, but models with similar characteristics can differ noticeably in weight. When assessing these differences and generally choosing an option based on weight, it is worth taking into account the specific application of the generator. So, if the device will often be moved from place to place - for example, when used “on the road” - it may be worth paying attention to lighter units that are more convenient to transport. However, it is worth considering that the downside of a lightweight design is often an increased cost or a reduced degree of protection. But for stationary use, you can not pay much attention to this parameter - or even the opposite: choose a heavier (and, as a rule, more advanced and functional) option.

Regarding specific numbers, it is worth noting that modern generators in general are quite massive. So, a small weight for such equipment is considered not only up to 20 kg, but even 20 – 30 kg ; Many units weigh 150–200 kg, or even more, and the weight of stationary industrial models is already measured in tons.
Konner&Sohnen KS 4500i often compared
Daewoo GDA 4800i Expert often compared