Dark mode
USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   Generators

Comparison Hyundai HHY10000FE-3 ATS vs Konner&Sohnen KS 7000E ATS-3

Add to comparison
Hyundai HHY10000FE-3 ATS
Konner&Sohnen KS 7000E ATS-3
Hyundai HHY10000FE-3 ATSKonner&Sohnen KS 7000E ATS-3
Outdated Product
from $945.00 up to $1,050.00
Outdated Product
TOP sellers
Main
HHY10000FE without auto start (230 V), HHY10000FE ATS with auto start (230 V), HHY10000FE-T without auto start (400 V), HHY10000FE-3 ATS with auto start (400 V)
Fuelpetrolpetrol
Output voltage230 and 400 V230 and 400 V
Rated power7.5 kW5 kW
Max. power8 kW5.5 kW
Alternatorsynchronoussynchronous
Alternator windingcoppercopper
Engine
ICE type4-stroke4-stroke
Motor typeHyundai IC460KS 390
Engine size460 cm³389 cm³
Power18 hp13 hp
Starter typeelectric starter (key)electric starter (key)
Fuel consumption (50% load)1.78 l/h1.47 l/h
Fuel tank volume25 L25 L
Fuel level indicator
Motor coolingairair
Connection (sockets)
Total number of sockets32
Sockets 230 V16 A x116 A x1
Sockets 400 V32 A x216 A x1
Output 12 Vterminalsterminals
Features
Features
autostart (ATS)
 
automatic voltage regulator (AVR)
 
hour metre
voltmeter
autostart (ATS)
ATS connection
automatic voltage regulator (AVR)
display
hour metre
voltmeter
General
Protection levelIP 23IP 23
Noise level74 dB95 dB
Sound level (7 m)70 dB
Dimensions750x590x620 mm680x545x550 mm
Weight89.5 kg76 kg
Added to E-Catalogjuly 2018september 2016

Rated power

The nominal power of a generator is the highest power that the unit can supply without problems for an unlimited period of time. In the “weakest” models, this figure is < 1 kW, in the most powerful ones – 50–100 kW and even more ; and generators with welding capabilities (see below) usually have a nominal power from 1–2 kW to 8–10 kW.

The main rule of choice in this case is as follows: the nominal power must not be lower than the total power consumption of the entire connected load. Otherwise, the generator will simply not be able to produce enough energy, or will work with overloads. However, to determine the minimum required generator power, it is not enough to simply add up the number of watts indicated in the characteristics of each connected device - the calculation method is somewhat more complicated. Firstly, it should be taken into account that only the active power of various equipment is usually indicated in watts; in addition, many AC electrical appliances consume reactive power ("useless" power consumed by coils and capacitors when working with such power). And the actual load on the generator depends on the total power (active plus reactive), indicated in volt-amperes. There are special coefficients and formulas for its calculation.

The second nuance is related to the power su...pply of devices in which the starting power (and, accordingly, the power consumption at the moment of switching on) is significantly higher than the nominal one - these are mainly devices with electric motors such as vacuum cleaners, refrigerators, air conditioners, power tools, etc. You can determine the starting power by multiplying the standard power by the so-called starting coefficient. For equipment of the same type, it is more or less the same - for example, 1.2 - 1.3 for most power tools, 2 for a microwave oven, 3.5 for an air conditioner, etc.; more detailed data can be found in special sources. Starting load characteristics are necessary primarily to assess the required maximum generator power (see below) - however, this power is not always given in the characteristics, often the manufacturer indicates only the nominal power of the unit. In such cases, when calculating for equipment with a starting coefficient of more than 1, it is worth using the starting power, not the nominal power.

Also note that if there are several sockets, the specific division of the total power between them may be different. This point should be clarified separately - in particular, for specific types of sockets (for more details, see "230 V sockets", "400 V sockets").

Max. power

The maximum power output that the generator can provide.

This power is slightly higher than the nominal (see above), but the maximum performance mode can only be maintained for a very short time - otherwise an overload occurs. Therefore, the practical meaning of this characteristic is mainly to describe the efficiency of the generator when working with increased starting currents.

Let us recall that some types of electrical appliances consume several times more power (and, accordingly, power) at the moment of starting than in the normal mode; this is typical mainly for devices with electric motors, such as power tools, refrigerators, etc. However, increased power for such equipment is needed only for a short time, normal operation is restored in literally a few seconds. And you can estimate the starting characteristics by multiplying the nominal power by the so-called starting coefficient. For equipment of the same type, it is more or less the same (1.2 - 1.3 for most power tools, 2 for a microwave oven, 3.5 for an air conditioner, etc.); more detailed data is available in special sources.

Ideally, the maximum power of the generator should be no less than the total peak power of the connected load - that is, the starting power of equipment with a starting factor greater than 1 plus the rated power of all other equipment. This will minimize the likelihood of overloads.

Motor type

Model name of the engine installed in the generator. Knowing this name, you can, if necessary, find detailed data on the engine and clarify how it meets your requirements. In addition, model data may be needed for some specific tasks, including maintenance and repair.

Note that modern generators are often equipped with branded engines from famous manufacturers: Honda, John Deere, Mitsubishi, Volvo, etc. Such engines are more expensive than similar units from little-known brands, but this is offset by higher quality and/or solid warranty conditions , and in many cases, the ease of finding spare parts and additional documentation (such as manuals for special maintenance and minor repairs).

Engine size

The working volume of the engine in a gasoline or diesel generator (see "Fuel"). Theoretically, more volume usually means more power, but in fact, everything is not so clear. Firstly, the specific power strongly depends on the type of fuel, and in gasoline units, also on the type of internal combustion engine (see above). Secondly, similar engines of the same power can have different volumes, and there is a practical point here: with the same power, a larger engine consumes more fuel, but by itself it can cost less.

Power

The operating power of the engine installed in the generator. Traditionally stated in horsepower; 1 HP approximately equal to 735 watts.

First of all, the rated power of the generator directly depends on this indicator (see above): in principle, it cannot be higher than the engine power, moreover, part of the engine power is spent on heat, friction and other losses. And the smaller the difference between these capacities, the higher the efficiency of the generator and the more economical it is. However high efficiency affects the cost, but this difference can pay off with regular use due to fuel savings.

Fuel consumption (50% load)

Fuel consumption of a petrol or diesel generator when operating at half power, and for combined models when using petrol (see “Fuel”).

Fuel consumption usually increases with load. However, generator efficiency is not always linear - fuel consumption may vary disproportionately with different loads. In this case, the approximate amount of fuel consumed by the generator when operating at half power (50% of the rated power) is given. Knowing the fuel consumption and tank capacity, you can at least estimate how long one fill-up will last.

Total number of sockets

The total number of sockets for 230 and/or 400 V provided in the design of the generator.

This number corresponds to the number of devices that can be simultaneously connected to the generator without using splitters, extension cords, etc. If it is a three-phase model (see "Output voltage") with different types of sockets, it is worth specifying the quantity of each type separately, as different models may have varying configurations. For example, a unit specified as having 3 sockets might have 1 three-phase socket and 2 single-phase ones, or 2 three-phase and 1 single-phase socket. Generally, the most basic modern generators have only 1 socket, though models with 2 sockets are more common; and the most powerful models can have 4 or more sockets.

It is also important to remember that the ability to connect various devices is limited not only by the number of sockets but also by the generator's rated power (see above for more details).

Sockets 400 V

The number of 400 V outlets provided in the generator design, as well as the type of connectors used in such outlets.

The type of connector in this case is indicated by the maximum power that is allowed for the outlet - for example, “2 pieces for 16 A”. The most popular options for 400V include 16A and 32A, although other types of outlets are also found. We emphasize that amperes in this designation are not the actual power that the generator can produce, but the outlet’s own limitation; the actual power value is usually noticeably lower. Simply put, if, for example, the generator has a 32 A socket, the output power on it will not reach 32 A; and the specific number of amperes will depend on the rated and maximum power of the unit (see above). So, if for our example we take a rated power of 7 kW and a maximum of 8 kW, then to a 400 V outlet such a generator will be able to produce no more than 7 kW / 400 V = 18.42 A standard and 8 kW / 230 V = 21, 05 And at the peak. In practice, these values will be even lower, since three-phase devices are almost always supplemented with single-phase sockets, and the power will have to be divided between different types of sockets. The specific specifics of power distribution in each case should be clarified separately.

As for specific types of connectors, the higher the power permissible for an outlet, the higher the requirements for its reliability...and quality of protection. In light of this, as a rule, higher power outlets can be connected to lower power plugs (directly or through an adapter), but not vice versa.

Features

12V output. The presence of an output with direct power and voltage of 12 V in the generator. The main purpose of this output is to charge car batteries, as well as to power devices originally intended for cars (recall that 12 V is the standard voltage of on-board networks in passenger cars).

USB charging port . The presence of a USB connector (one or more) on the generator for charging various devices. Most modern smartphones and tablets can be charged via USB, and this charging method is also found in many other devices — from cameras and flashlights to electric screwdrivers and radio-controlled models. The standard supply voltage through this connector is 5 V, but the power may be different, it should be specified separately.

Smartphone control. Synchronization with a smartphone allows you to control the generator remotely. Thanks to this, the user does not need to approach the device to, for example, start or stop it. Additionally, synchronization with a smartphone allows you to monitor the parameters of the generated electric power remotely and in real time. On the other hand, this will require a constant connection to the Internet and specialized software that must be installed on the smartphone.

Autostart (ATS). A function that allows the generator to turn on automatically under certain conditio...ns, without any action from the user. Autostart is mainly used when using the generator as a backup power source: while the main power is working, the unit is turned off, and if the voltage in the network disappears, ATS starts the engine, and power to the load begins to flow from the generator. Note that the presence of autostart is indicated only if the generator is initially equipped with an ATS electronic unit; models with the ability to connect such a unit are placed in a separate category (see below).

ATS socket. A connector that allows you to connect an external autostart unit (ATS) to the generator; the unit itself is not included in the kit. For more information on autostart, see above; here we note that some users do not initially need this function, but may need it in the future — for example, if the generator is initially used for building a house, and then it is planned to be installed in the same house as a backup power source. In such situations, this configuration option will be optimal: when buying the generator itself, you will not have to overpay for the ATS unit, and later, if necessary, you can buy and connect such a unit separately.

— Automatic voltage regulator (AVR). An automatic regulator that allows maintaining a constant voltage level at the generator output. Such a regulator smooths out the differences that occur due to changes in the engine speed; this is especially important when connecting devices that are sensitive to power supply stability. It is worth noting that the presence of an AVR is almost mandatory for synchronous generators (see "Alternator"), but in other varieties this function is not found: in asynchronous and duplex units it is not applicable in principle, and in inverter units the role of the regulator is played by the inverter itself, and they do not require additional electronics.

Display. A dedicated display mounted on the generator body. Typically, this is a simple LCD screen capable of displaying only numbers and some special symbols. However, even such a screen can display various useful information: voltage, frequency, engine hour meter data, low fuel warning, error code failure messages, etc. This makes control more convenient and visual.

Hour metre. A device that counts the total time that the generator engine has been running since it was first turned on. This helps determine the overall wear of the engine and the need for repair/replacement, which can be useful both during long-term use of the device and, for example, to assess the quality of the product when buying a used generator. It is usually impossible to reset the hour meter without serious intervention in the design of the device.

Voltmeter. A device that displays the power voltage produced by the generator. The voltmeter can be made in the form of a separate pointer scale, or its readings can be displayed on the generator's own display (see above). In any case, this function allows you to carefully monitor the unit's operating mode and reduces the risk that an unacceptable voltage will be applied to the load.

Parallel connection. The presence of special connectors in the generator design, through which two or more units can be connected to a single electrical network (usually with the help of an additional device). This type of connection is used when one unit is not able to handle the entire load and the connection power exceeds the capabilities of the device itself. Also, such a scheme has gained popularity if one of the units is planned to be used as a backup power source.

Remote start. The remote control generator is included in the delivery set. It is made in the form of a wireless key fob and allows you to turn on/off the device remotely without approaching it.
Hyundai HHY10000FE-3 ATS often compared
Konner&Sohnen KS 7000E ATS-3 often compared