USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Generators

Comparison Matari MX10000E vs SADKO GPS-8500EF

Add to comparison
Matari MX10000E
SADKO GPS-8500EF
Matari MX10000ESADKO GPS-8500EF
Outdated Product
from $835.60
Outdated Product
TOP sellers
Main
Electric starter. Automatic voltage regulator (AVR). Output 12 V. Wheels.
Fuelpetrolpetrol
Output voltage230 B400 V
Rated power7 kW7 kW
Max. power7.5 kW7.5 kW
Alternatorsynchronoussynchronous
Alternator windingcopper
Engine
ICE type4-stroke4-stroke
Motor typeMatari M192F
Engine size439 cm³440 cm³
Power16 hp16 hp
Launch typeelectric starter (key)electric starter
Fuel consumption
2 L/h /at 60% load/
3.12 L/h
Fuel tank volume25 L25 L
Fuel level indicator
Continuous operation time
12.5 h /at 60% load/
8 h
Motor coolingairair
Connection
Number of sockets (230/400 V)22
Sockets 230 V16 A x1, 32 A x116 A x1
Sockets 400 V32 A x1
Output 12 Vterminals
Features
Functions
automatic voltage regulator (AVR)
display
hour metre
voltmeter
automatic voltage regulator (AVR)
 
 
voltmeter
General
Wheels
Protection levelIP 23
Sound level (7 m)72 dB
Dimensions825x530x560 mm
Weight85.4 kg95.4 kg
Added to E-Catalogjune 2017september 2016

Output voltage

Rated voltage at the generator output.

230 V(1 phase). Standard voltage of a regular household outlet. It is widely used in everyday life, and among specialized equipment there are many 230 V devices; the only exception is powerful equipment (mostly from 4 - 5 kW), for which this voltage is no longer enough. It is 230-volt generators that are worth paying attention to, in particular, for those who are looking for a device for emergency power supply to a residential premises or small office.

400 V(3 phases). Generators capable of delivering three-phase power at 400 V. This power is rarely used in everyday life, but it may be required for heavy equipment and other similar loads. Generators with a voltage of 400 V are generally more powerful, heavier, more expensive and more power-hungry than 230-V generators. Most of them are equipped not only with three-phase, but also with single-phase sockets; however, it is worth specifically looking for such a unit only if the presence of three-phase power is essential.

Alternator winding

Copper. Copper winding is typical for advanced class generators. The copper alternator is characterized by high conductivity and low resistance. The conductivity of copper is 1.7 times higher than the conductivity of aluminium, such a winding heats up less, and compounds made of this metal endure temperature drops and vibration loads. Among the disadvantages of the copper winding, one can only note the high cost of the alternator. Otherwise, generators with copper winding have high reliability and durability.

— Aluminium. The aluminium winding of the alternator is typical for low-cost-class generators. The main advantages of aluminium are light weight and low price; otherwise, such a winding is usually inferior to copper counterparts. An oxide film is created on the surface of aluminium, it appears everywhere, even in the places of contact soldering. The oxide film undermines the contacts and does not allow the outer protective braid to securely hold the aluminium conductors.

Motor type

Model name of the engine installed in the generator. Knowing this name, you can, if necessary, find detailed data on the engine and clarify how it meets your requirements. In addition, model data may be needed for some specific tasks, including maintenance and repair.

Note that modern generators are often equipped with branded engines from famous manufacturers: Honda, John Deere, Mitsubishi, Volvo, etc. Such engines are more expensive than similar units from little-known brands, but this is offset by higher quality and/or solid warranty conditions , and in many cases, the ease of finding spare parts and additional documentation (such as manuals for special maintenance and minor repairs).

Engine size

The working volume of the engine in a gasoline or diesel generator (see "Fuel"). Theoretically, more volume usually means more power, but in fact, everything is not so clear. Firstly, the specific power strongly depends on the type of fuel, and in gasoline units, also on the type of internal combustion engine (see above). Secondly, similar engines of the same power can have different volumes, and there is a practical point here: with the same power, a larger engine consumes more fuel, but by itself it can cost less.

Launch type

Method of starting an electric generator engine. To start an internal combustion engine (gasoline or diesel, see “Fuel”), in any case, it is necessary to rotate the engine shaft; you can do this in two ways:

- Manual. With this starting method, the initial impulse is transmitted to the engine manually - usually the user needs to forcefully pull the cable that spins a special flywheel. The simplest in design and cheapest starting method, the additional equipment requires only the cable itself with a flywheel. On the other hand, it may require significant muscular effort from the user and is not well suited for high-power units.

Electric starter. With this type of starting, the engine shaft is rotated using a special electric motor, which is called a starter; The starter is powered by its own battery. This option for starting the generator power unit is the easiest for the user and requires a minimum of effort. Depending on the implementation of the electric starter, it is usually enough to turn the key in the ignition, press a button, turn a knob or spin a special drum, etc. The power of modern starters is sufficient even for heavy engines where manual starting is difficult or impossible. Also note that an electric starter is by definition required to use ATS autostart (see Features). On the other hand, additional equipment affects the weight and cost of the unit, sometimes quite notic...eably. Therefore, such starting systems are used mainly where they cannot be avoided - in the aforementioned heavy equipment, as well as generators with ATS.

Fuel consumption

Fuel consumption of a gasoline or diesel generator, and for combined models — when using gasoline (see "Fuel").

A more powerful engine inevitably means more fuel consumption; however, models with the same engine power may differ in this indicator. In such cases, it is worth considering that a model with a lower flow rate usually costs more, but this difference can quickly pay off, especially with regular use. In addition, knowing the fuel consumption and tank volume, you can determine how long one refueling will last; at the same time, in inverter models at partial load, the actual operating time may be noticeably higher than the theoretical one, see "Alternator" for details.

Continuous operation time

The time during which the generator is guaranteed to operate without interruption.

This parameter is indicated exclusively for liquid fuel models with a built-in tank, and according to the simplest formula: tank capacity divided by fuel consumption. However, in some models, data may be provided for a certain load level (which is specified in the notes); at a higher or lower load, the operating time will be shorter or longer, respectively. As for specific numbers, in most modern generators the operating time is up to 8 hours - this is quite enough for backup power and occasional use. More reputable models are capable of working for 8 – 12 hours, and an indicator of 13 hours and above is typical mainly for professional solutions.

We also note that, theoretically, many generators can be refueled without shutting down, but in practice it is better to take breaks and not exceed the stated time of continuous operation - this will avoid overheating and increased wear.

Sockets 230 V

The number of 230 V sockets provided in the design of the generator, as well as the type of connectors used in such sockets.

The type of connector in this case is indicated by the maximum current that is allowed for the outlet — for example, "2 pcs at 16 A". The most popular options for 220-volt outlets are 16 A, 32 A and 63 A. We emphasize that the amperes in this designation are not the actual current that the generator can produce, but the outlet's own limitation; the actual value of the current strength is usually noticeably lower. Simply put, if, for example, the generator has a 32 A socket, the output current on it will not reach 32 A; and the specific number of amperes will depend on the rated and maximum power of the unit (see above). So, if for our example we take a rated power of 5 kW and a maximum of 6 kW, then such a generator can deliver less than 5 kW / 230 V = 22.7 A nominally and 6 kW / 230 V = 27 to a 230 V socket, 3 And at the peak. And if the power has to be divided between several outlets, then it, accordingly, will be even less.

As for specific types of connectors, the higher the current allowed for the outlet, the higher the requirements for its reliability and quality of protection. Thus, usually, smaller power plugs can be connected to higher power sockets (directly or through an adapter), but not vice versa. And if there are several sockets, by their type it is pos...sible to estimate with a certain certainty the distribution of the entire power of the generator between them: between two identical sockets, this power is usually divided equally, and more power is allocated to the socket for a larger number of amperes. However, specific details on this matter should be clarified in each case separately; also consider 400 V sockets, if available (see below).

Sockets 400 V

The number of 400 V sockets provided in the design of the generator, as well as the type of connectors used in such sockets.

The type of connector in this case is indicated by the maximum power that is allowed for the socket - for example, "2 pcs for 16 A". The most popular options for 400V include 16A and 32A, although other socket types are also found. We emphasize that the amperes in this designation are not the actual power that the generator can produce, but the outlet's own limitation; the actual value of the power strength is usually noticeably lower. Simply put, if, for example, the generator has a 32 A socket, the output power on it will not reach 32 A; and the specific number of amperes will depend on the rated and maximum power of the unit (see above). So, if for our example we take a rated power of 7 kW and a maximum of 8 kW, then such a generator can give out no more than 7 kW / 400 V = 18.42 A nominally and 8 kW / 230 V = 21 to a 400 V socket, 05 And at the peak. In practice, these values will be even less, since three-phase devices are almost always supplemented with single-phase sockets, and the power will have to be divided between different types of sockets. The specifics of power distribution in each case should be clarified separately.

As for specific types of connectors, the higher the power allowed for the outlet, the higher the requirements for its reliability an...d quality of protection. In light of this, as a rule, smaller power plugs can be connected to higher power sockets (directly or through an adapter), but not vice versa.
Matari MX10000E often compared