Dark mode
USA
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison NZXT Kraken X63 vs NZXT Kraken X62

Add to comparison
NZXT Kraken X63
NZXT Kraken X62
NZXT Kraken X63NZXT Kraken X62
from $199.92 
Outdated Product
Compare prices 1
TOP sellers
Main
Complete sets without fasteners for socket AM4 are possible. Package contents RL-KRX62-01 — without AM4 support, RL-KRX62-02 — with AM4 support.
Main specs
Featuresfor CPUfor CPU
Product typeliquid coolingliquid cooling
Fan
Number of fans22
Fan size140 mm140 mm
Bearinghydrodynamichydrodynamic
Min. RPM500 rpm500 rpm
Max. RPM1800 rpm1800 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow98.17 CFM
Static pressure2.71 mm H2O
MTBF60 K hours60 K hours
replaceable
Min noise level21 dB21 dB
Noise level38 dB38 dB
Power source4-pin4-pin
Radiator
Heatsink materialaluminiumaluminium
Plate materialcopper
Socket
 
AMD AM4
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Liquid cooling system
Heatsink size280 mm280 mm
Pump size80x80x55 mm80x80x53 mm
Pump rotation speed2800 rpm2800 rpm
Pipe length400 mm
Pump power source4-pin
General
Lighting
Lighting colourRGBRGB
Lighting syncNZXT CAM
Mount typebilateral (backplate)latches
Manufacturer's warranty6 years
Dimensions315x143x30 mm315x143x30 mm
Weight2090 g
Added to E-Catalogjanuary 2020august 2017

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

Plate material

The material from which the substrate of the cooling system is made is the surface that is in direct contact with the cooled component (most often the processor). This parameter is especially important for models with heat pipes (see above), although it can be specified for coolers without this function. Options can be as follows: aluminium, nickel-plated aluminium, copper, nickel-plated stranded. More about them.

— Aluminium. The traditional, most common backing material. At a relatively low cost, aluminium has good thermal conductivity characteristics, is easy to grind (required for a snug fit), and well resists scratches and other irregularities, as well as corrosion. However in terms of heat removal efficiency, this material is still inferior to copper — however, this becomes noticeable mainly in advanced systems that require the highest possible thermal conductivity.

— Copper. Copper is noticeably more expensive than aluminium, but this is offset by higher thermal conductivity and, accordingly, cooling efficiency. The noticeable disadvantages of this metal include some tendency to corrosion when exposed to moisture and certain substances. Therefore, pure copper is used relatively rarely — nickel-plated substrates are more common (see below).

— Nickel-plated copper. Copper substrate with an additional n...ickel coating. Such a coating increases resistance to corrosion and scratches, while it practically does not affect the thermal conductivity of the substrate and work efficiency. However this feature somewhat increases the price of the radiator, but it is found mainly in high-end cooling systems, where this moment is almost invisible against the background of the overall cost of the device.

— Nickel-plated aluminium. Aluminium substrate with an additional nickel coating. For aluminium in general, see above, and the coating makes the heatsink more resistant to corrosion, scratches, and burrs. On the other hand, it affects the cost, despite the fact that in fact, pure aluminium is often quite sufficient for efficient operation (especially since this metal itself is very resistant to corrosion). Therefore, this variant was not distributed.

Socket

Socket - processor connector - with which the corresponding cooling system is compatible.

Different sockets differ not only in compatibility with a particular CPU, but also in the configuration of the mounting place for the cooling system. So, when purchasing a processor cooling system separately, it is worth making sure that it is compatible with the socket. Nowadays, solutions are mainly produced for the following types of sockets: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD AM5, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/2011 v3, Intel 2066, Intel 1151/1151 v2, Intel 1200, Intel 1700.

Pump size

The dimensions of the pump that the water cooling system is equipped with.

Most often, this parameter is indicated for all three dimensions: length, width and thickness (height). These dimensions determine two points: the space required to install the pump, and the diameter of its working part. With the first, everything is quite obvious; we only note that in some systems the pump simultaneously plays the role of a water block and is installed directly on the cooled component of the system, and it is there that there should be enough space. The diameter approximately corresponds to the length and width of the pump (or the smaller of these dimensions if they are not the same — for example, 55 mm in the model 60x55x43 mm). Some operating features depend on this parameter. So, the large diameter of the pump allows you to achieve the required performance at a relatively low rotation speed; the latter, in turn, reduces the noise level and increases the overall reliability of the structure. On the other hand, a large pump costs more and takes up more space.

Pipe length

The length of the tubes connecting the water block to the radiator in a water cooling system. By definition, there are at least two such tubes (supply and return), and sometimes more, but they all have the same length. This length corresponds to the largest distance from the water block to the radiator, possible for this system in the standard configuration; this nuance must be taken into account when choosing water cooling for a specific installation location. In general, most models are 38 or 40 cm long, which is enough for basic needs.

Pump power source

Type of power connector for the water pump.

3-pin. The three-pin power connector on older motherboards does not allow you to control the speed of the water pump motor in liquid cooling systems. At the same time, the pump always works in the maximum performance mode. Fresh "motherboards" are able to change the voltage on such connectors, thereby providing a change in engine speed.

4-pin. When using a 4pin power connector, it is supposed to control the speed of the pump motor using pulse-width modulation. A voltage of 12 V is applied to it with pulses. By changing the duration of the pulses, you can accurately set the speed of the water pump motor.

SATA. The SATA power connector will come in handy if all free 3pin and 4pin connectors are occupied on the motherboard.

Lighting sync

Backlight synchronization technology, provided in the cooling system with built-in lighting (see above).

Synchronization itself allows you to "match" the cooling backlight with the backlight of other system components — the motherboard, processor, graphics card, case, keyboard, mouse, etc. Thanks to this matching, all components can change colour synchronously, turn on / off at the same time, etc. The specific features of the operation of such a backlight depend on the synchronization technology used, and, usually, each manufacturer has its own (Aura Sync for Asus, RGB Fusion for Gigabyte, etc.). The compatibility of the components also depends on this: they must all support the same technology. So the easiest way to achieve backlight compatibility is to collect components from the same manufacturer. However, among the cooling systems there are solutions of the multi compatibility format — compatible with several synchronization technologies at once; a specific compatibility list is usually indicated in the detailed specifications of such models.

Mount type

Latches. The simplest and most convenient type of fastening, in particular due to the fact that it does not require the use of additional tools. Plus, you don't need to remove the motherboard for snap-on installation.

— Double- sided (backplate). This type of fastening is used in the most powerful and, as a result, heavy and large-sized cooling systems. Its feature is the presence of a plate installed on the opposite side of the motherboard — this plate is designed to protect against damage and so that the board does not bend under the weight of the structure.

Bolts. Fastening with classic bolts. It is considered somewhat more reliable than latches (see above), but less convenient, because. You can remove and install the cooling system only with a screwdriver. To date, bolts are mainly used to fasten case fans, as well as cooling systems for RAM and hard drives (see "Type", "Purpose").

Silicone mounts. The main advantage of silicone fasteners is good vibration absorption, which significantly reduces the noise level compared to similar systems using other types of fasteners. On the other hand, silicone is somewhat less reliable than bolts, so both types of fasteners are usually supplied in the kit, and the user chooses which ones to use.

— Adhesive tape. Fastening with adhesive tape (adhesi...ve tape), usually double-sided. The main advantages of this mount are ease of use and compactness. On the other hand, it is difficult to remove such a cooling system. In addition, adhesive tape is inferior in thermal conductivity to the same thermal paste.
NZXT Kraken X63 often compared
NZXT Kraken X62 often compared