Dark mode
USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Acer Swift 3 SF314-42 [NX.HSEEU.00M] vs Asus ZenBook 14 UM431DA [UM431DA-AM048]

Add to comparison
Acer Swift 3 SF314-42 (NX.HSEEU.00M)
Asus ZenBook 14 UM431DA (UM431DA-AM048)
Acer Swift 3 SF314-42 [NX.HSEEU.00M]Asus ZenBook 14 UM431DA [UM431DA-AM048]
Outdated ProductOutdated Product
TOP sellers
Typeultrabookultrabook
Screen
Screen size14 "14 "
Screen typeIPSIPS
Surface treatmentmattematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness290 nt270 nt
Contrast1450 :11300 :1
Colour gamut (sRGB)57 %92 %
CPU
SeriesRyzen 7Ryzen 7
Model4700U3700U
Code nameRenoir (Zen 2)Picasso (Zen+)
Processor cores84
Total threads88
CPU speed2 GHz2.3 GHz
TurboBoost / TurboCore frequency4.1 GHz4 GHz
CPU TDP15 W
3DMark064595 score(s)
Passmark CPU Mark14327 score(s)7976 score(s)
SuperPI 1M12.58 с
RAM
RAM8 GB16 GB
RAM typeDDR4DDR4
RAM speed3200 MHz2400 MHz
Slotsbuilt-inbuilt-in
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelVega 7Vega 10
3DMark0614890 points
3DMark Vantage P11391 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB1024 GB
M.2 drive interfacePCI-E 3.0 4x
Connections
Connection ports
HDMI
HDMI
Card reader
USB 2.01 pc1 pc
USB 3.2 gen11 pc1 pc
USB C 3.2 gen11 pc
USB C 3.2 gen21 pc
Alternate Mode
Monitors connection21
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers24
Brand acousticsHarman Kardon
Security
fingerprint scanner
kensington / Noble lock
fingerprint scanner
 
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity4471 mAh6150 mAh
Battery capacity50 W*h47 W*h
Battery voltage11.25 V7.7 V
Operating time11 h12 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OSLinuxno OS
MIL-STD-810 Military Standard
In box
 
backpack/bag/case
Materialaluminium / magnesium alloyaluminium
Dimensions (WxDxT)323x219x18 mm324x212x16 mm
Weight1.2 kg1.39 kg
Color
Added to E-Catalogapril 2020march 2020

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point, Zen 5 Strix Point. Detailed data on different code names can be found in special sources.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

CPU TDP

The amount of heat generated by the processor during normal operation. This parameter determines the requirements for the cooling system necessary for the normal operation of the processor, therefore it is sometimes called TDP - thermal design power, literally “thermal (cooling) system power”. Simply put, if the processor has a heat dissipation of 60 W, it needs a cooling system that can remove at least this amount of heat. Accordingly, the lower the TDP, the lower the requirements for the cooling system.
Acer Swift 3 SF314-42 often compared
Asus ZenBook 14 UM431DA often compared