USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo IdeaPad S540 15 [S540-15IML 81NG0093RA] vs Lenovo ThinkBook 15 [15-IML 20RW0002RA]

Add to comparison
Lenovo IdeaPad S540 15 (S540-15IML 81NG0093RA)
Lenovo ThinkBook 15 (15-IML 20RW0002RA)
Lenovo IdeaPad S540 15 [S540-15IML 81NG0093RA]Lenovo ThinkBook 15 [15-IML 20RW0002RA]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentglossanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness300 nt250 nt
Contrast800 :1
CPU
SeriesCore i5Core i5
Model10210U10210U
Code nameComet Lake (10th Gen)Comet Lake (10th Gen)
Processor cores44
Total threads88
CPU speed1.6 GHz1.6 GHz
TurboBoost / TurboCore frequency4.2 GHz4.2 GHz
3DMark066363 score(s)6680 score(s)
Passmark CPU Mark7024 score(s)8570 score(s)
SuperPI 1M8.96 с8.91 с
RAM
RAM8 GB8 GB
Max. RAM12 GB24 GB
RAM typeDDR4DDR4
RAM speed2400 MHz2666 MHz
Slotsbuilt-in + 1 slotbuilt-in + 1 slot
Graphics card
Graphics card typededicatedintegrated
Graphics card seriesNVIDIA GeForceIntel HD Graphics
Graphics card modelMX250UHD Graphics 620
Video memory2 GB
Memory typeGDDR5
3DMark0622246 points10622 points
3DMark Vantage P16488 points7761 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB256 GB
M.2 drive interfacePCI-E 3.0 4xPCI-E 3.0 4x
M.2 drive size22x80 mm
Additional 2.5" slot
Connections
Connection ports
HDMI
v 1.4b
HDMI
v 1.4b
Card reader
 /SD/MMC/
 /MMC/SD/
USB 2.01 pc
USB 3.2 gen122
USB C 3.2 gen11 pc1 pc
USB C 3.2 gen21 pc
Alternate Mode
LAN (RJ-45)1 Gbps
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Security
fingerprint scanner
 
fingerprint scanner
kensington / Noble lock
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Additional keys44
Waterproof
Input deviceglass touchpadtouchpad
Battery
Battery capacity70 W*h45 W*h
Operating time15 h9 h
Powered by USB-C (Power Delivery)
Fast charge
 /80% in 60 minutes/
 /80% in 60 minutes/
General
Preinstalled OSDOSWindows 10 Pro
MIL-STD-810 Military Standard
Materialaluminiumaluminium / plastic
Dimensions (WxDxT)358x245x17 mm364x245x19 mm
Weight1.95 kg1.8 kg
Color
Added to E-Catalogapril 2020january 2020

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

SuperPI 1M

The result shown by the laptop processor in the SuperPI 1M test.

The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).

Max. RAM

The maximum amount of RAM that can be installed on a laptop. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them. Paying attention to this parameter makes sense, first of all, if the laptop is bought with the expectation of and the amount of actually installed memory in it is noticeably less than the maximum available. So laptops can be upgraded in RAM to 16 GB, 24 GB a>, 32 GB, 48 GB, 64 GB and even more - 128 GB.

RAM speed

The clock speed of the RAM installed in the laptop.

The higher the frequency (with the same type and amount of memory) — the higher the performance of RAM in general and the faster the laptop will cope with resource-intensive tasks. However modules with the same frequency may differ somewhat in actual performance due to differences in other characteristics; but this difference becomes significant only in very specific cases, for the average user it is not critical. As for specific values, the most popular modules on the modern market are 2400 MHz, 2666 MHz, 2933 MHz and 3200 MHz. Memory at 2133 MHz or less is found mainly in outdated and low-cost devices, and in high-performance configurations this parameter is 2933 MHz, 3200 MHz, 4266 MHz, 4800 MHz, 5200 MHz, 5500 MHz, 5600 MHz and more.

Graphics card type

Integrated(built-in). Video cards that do not have their own memory and use the general system RAM during operation. In modern laptops, such video cards are usually part of the processor. Their main advantages are low cost and power consumption, as well as low heat generation. However, the performance of integrated graphics is noticeably lower than that of discrete graphics, and besides, at high loads it “eats” a significant part of the RAM, which negatively affects the overall system performance. Integrated graphics will be perfect for lighter tasks like document work, web surfing, and light gaming, but for more serious applications, more advanced solutions are worth choosing (see below).

Discrete. Graphics card as a separate module with its own processor and specialized memory dedicated exclusively to video processing. Such graphics are more expensive than integrated ones, but they significantly outperform them in terms of performance. In addition, even at high loads, it does not take up the total RAM, and some laptops are even able to allocate part of the video memory in addition to RAM if the graphics card is idle. So if you want to play modern games at least at medium settings, or plan to use a laptop for "heavy" graphic tasks like video editing or 3D design, you should definitely choose a model with discrete graphics (or one of its advanced options — Dual Graphics or SLI/Crossfire, see bel...ow).
It is worth noting that most models with such video cards also have a built-in graphics core in the processor. So discrete graphics in modern laptops most often work in hybrid mode: an integrated module is used for simple tasks, and when the load increases, the system switches to discrete graphics.

— Dual Graphics. AMD proprietary technology used in systems equipped with Fusion integrated graphics processors and discrete Radeon graphics cards (originally stated to be compatible with the Radeon 6000 series). The difference between this mode and discrete graphics with automatic switching (see above) is that both video adapters are used not in turn, but simultaneously. Thus, their capacities are combined, which provides a significant increase in video performance. At the same time, Dual Graphics provides ample features for choosing a combination of processors and video cards, because. allows you to combine video cores with different operating frequencies without sacrificing a faster one. The main disadvantage of this technology is the inability to work with Direct X below version 10.

SLI/CrossFire. Initially, SLI and CrossFire are proprietary technologies used by nVidia and AMD, respectively, to combine the power of several discrete graphics cards. This allows for very high graphics performance. On the other hand, installing several video adapters (even compact ones) in a laptop is associated with serious difficulties: such equipment significantly increases the dimensions of the case and significantly increases power consumption, not to mention the cost. As a result, there are very few laptops with SLI / Crossfire nowadays, and they all belong to the top gaming solutions.
Lenovo IdeaPad S540 15 often compared