Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Vaillant ecoTEC pro VUW INT 286/5-3 24 kW vs Vaillant ecoTEC plus VUW INT 246/5-5 21.7 kW

Add to comparison
Vaillant ecoTEC pro VUW INT 286/5-3 24 kW
Vaillant ecoTEC plus VUW INT 246/5-5 21.7 kW
Vaillant ecoTEC pro VUW INT 286/5-3 24 kWVaillant ecoTEC plus VUW INT 246/5-5 21.7 kW
from $1,212.45 up to $1,424.16
Outdated Product
from $1,399.26 up to $1,652.18
Outdated Product
User reviews
0
0
0
1
0
2
0
1
TOP sellers
Main
Scheme of work winter-summer. High energy efficiency due to the use of gas condensate. Low NOx emissions. A complete set of protective elements of the security system. Built-in eBus communication bus.
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area192 m²174 m²
Condensing
Technical specs
Heat output24 kW21.7 kW
Min. heat output4.2 kW
Power supply230 V230 V
Power consumption70 W70 W
Coolant min. T30 °С30 °С
Coolant max. T85 °С85 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar10 bar
Consumer specs
DHW min. T35 °С
DHW max. T65 °С65 °С
Performance (ΔT ~30 °C)11.5 L/min
"Summer" mode
Warm start
Circulation pump
Control buseBuseBus
Boiler specs
Efficiency107 %108 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100 mm60/100 mm
Expansion vessel capacity8 L10 L
Coolant performance860 L/h
Connections
Mains water intake3/4"3/4"
DHW flow3/4"3/4"
Gas supply1/2"1/2"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
More specs
Dimensions (HxWxD)720x440x338 mm720x440x338 mm
Weight34.7 kg35 kg
Added to E-Catalogaugust 2014august 2014

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Heat output

It is the maximum useful power of the boiler.

The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.

It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Performance (ΔT ~30 °C)

The performance of a dual-circuit boiler in hot water mode when water is heated by approximately 30 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain ΔT — namely 25 °C, 30 °C and/or 50 °C. And it is worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the mode ΔT ~ 30 °C and give out at least warm water at 40 °C, the initial temperature of cold water should be about 10 °C (10 + 30=40 °C). A similar temperature can be found in wells in the warm season, and cold water in the ce...ntralized water supply system often warms up to 10 °C in the warm season. However, boilers, including dual-circuit boilers, are switched on mainly in cold weather, when the initial water temperature is noticeably lower. Accordingly, if the boiler is used as the main water heater, heating to the claimed temperatures (see "DHW min. T", "DHW max. T") often requires a greater ΔT than 30 °C, and the performance is less than indicated in this paragraph. But when operating in the preheating mode (when the water is heated to the desired temperature by an additional device like a boiler), this parameter describes the capabilities of the unit very reliably.

Warm start

Support for the warm start function by the boiler.

This function is found only in dual-circuit models (see "Type"): it accelerates the water heating for the domestic hot water system and ensures a constant leaving water temperature. To do this, the boiler automation monitors and controls the temperature of the water in the secondary heat exchanger of the boiler. The presence of a "warm start" affects the cost of the unit, but this is offset by the ease of use.

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.

Expansion vessel capacity

The capacity of the expansion tank supplied with the boiler.

The expansion tank is designed to drain excess water from the heating system when the total volume of liquid increases as a result of heating. It consists of two parts connected by a flexible membrane: in one, hermetically closed, there is air under pressure; in the other, excess water enters, compressing the membrane. In this way, a catastrophic increase in pressure in the heating circuit is avoided. The optimal volume of the expansion tank depends on several system parameters, primarily the volume and composition of the coolant; detailed recommendations for calculations can be found in special sources.

Coolant performance

The amount of heat carrier passing through the boiler heat exchanger per unit of time. The optimal performance is such that three full volumes of the entire heating system pass through the heat exchanger per hour.
Vaillant ecoTEC pro VUW INT 286/5-3 often compared
Vaillant ecoTEC plus VUW INT 246/5-5 often compared