Installation
Regarding the installation method, boilers are divided into two main types: wall and floor.
—
Wall-mounted boilers, as the name suggests, are designed to be mounted on a wall. They usually have low power, which makes it possible to do without a separate room for their installation, and relatively small dimensions, which allow the boiler to fit into the interior of a kitchen or bathroom.
—
Floor boilers usually have more power than wall-mounted ones, which accordingly affects their weight, dimensions and the installation method. The weight is also due to the presence of a cast iron heat exchanger, which is considered more reliable and durable than copper, steel or silumin. Most boilers with a power of 50 kW or more and almost all boilers with a power of 100 kW or more are floor-standing.
— Parapet. They are designed for installation close to the wall; at the same time, the installation itself can be both wall-mounted and floor-mounted, depending on the dimensions and weight of the unit. All parapet boilers are gas-fired (see Energy source) and have a closed combustion chamber (see below); in this case, the flue goes directly through the wall, near which the boiler is located. One of the key advantages of such devices is their small size; a parapet boiler is considered a good option for a small city apartment or a private house with small rooms. Also, the advantages of such dev
...ices are that they do not burn the air from the room and immediately remove the products of combustion to the outside. In addition, many of the boilers of this type have convection holes and during operation they also play the role of heating radiators.Heating area
A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.
Built-in water heater tank
The presence of a built-in water heater tank in the boiler — a storage tank for water used in the hot water supply system. For obvious reasons, this feature is found exclusively in dual-circuit boilers (see "Type"). It provides several advantages over a flow-through design (when the boiler heats water directly in the process of moving through the heat exchanger). Firstly, in the tank, you can constantly keep a supply of ready hot water, and use it even in case of interruptions in the water supply. Secondly, the temperature of the dispensed water is constant, while in instant heating devices fluctuations are possible when the water flow rate changes. Thirdly, the efficiency of work does not depend on the pressure in the water supply. On the other hand, this feature significantly affects the dimensions, weight and price of the boiler.
DHW tank volume
The volume of the DHW tank provided in the boiler.
In this case, we can talk about both built-in tanks (see above), and a separate device supplied in the kit. The first option is found in dual-circuit boilers, and the second is in single-circuit ones (see "Type"). Anyway, the larger the tank, the more water you can keep in reserve, but the larger and heavier the entire boiler or separate tank is. There are special methods that allow you to calculate the optimal tank capacity depending on the number and type of water points, the number of users, etc. Such methods are described in detail in special sources, but we note here that the average value is considered to be about 80 – 100 litres. It is enough for regular use by a family of 3 – 4 people.
Heat output
It is the maximum useful power of the boiler.
The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.
It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).
Min. heat output
The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.
Power consumption
The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.
Coolant min. T
The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.
DHW circuit max. pressure
The maximum pressure in the hot water circuit (DHW) at which it can operate for a long time without failures and damage. See "Heating circuit maximum pressure".