Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Tenko KE 18/380 18 kW
400 H
vs Vaillant eloBLOCK VE 18 18 kW
400 H

Add to comparison
Tenko KE 18/380 18 kW 400 H
Vaillant eloBLOCK VE 18 18 kW 400 H
Tenko KE 18/380 18 kW
400 H
Vaillant eloBLOCK VE 18 18 kW
400 H
Outdated Product
from $736.26 up to $837.53
Outdated Product
User reviews
0
0
11
TOP sellers
Main
The model from 2019 has a new look, the name remains old, please specify this point when buying.
Energy sourceelectricityelectricity
Installationwallwall
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area144 m²135 m²
Technical specs
Heat output18 kW18 kW
Min. heat output6 kW
Power supply400 V400 V
Coolant min. T25 °С
Coolant max. T90 °С85 °С
Heating circuit max. pressure3 bar3 bar
Consumer specs
"Summer" mode
Heated floor mode
Circulation pump
Control buseBus
Boiler specs
Efficiency99 %99 %
Combustion chamberno chamberno chamber
Expansion vessel capacity8 L
Connections
Central heating flow1"3/4"
Central heating return1"3/4"
Safety
Safety systems
water overheating
 
 
water overheating
water circulation failure
frost protection
More specs
Dimensions (HxWxD)623x262x175 mm740x410x315 mm
Weight18 kg24 kg
Added to E-Catalogjune 2019june 2012

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

"Summer" mode

It is an operating mode designed for the warm season. In this mode, it works only to provide domestic hot water, and the heating is turned off. If the boiler is equipped with an outside temperature sensor, this sensor is also switched off in summer mode so that the heating does not turn on at night when the outside temperature drops.

Heated floor mode

The boiler has a special mode for underfloor heating systems.

Underfloor heating differs from conventional heating systems primarily by a lower coolant temperature — otherwise the floor could be too hot for comfortable use (plus, high temperatures are also undesirable for flooring and furniture installed on it). In addition, boilers with this function are distinguished by increased pump power. In order to ensure efficient circulation of the coolant through branched heating circuits that have rather high resistance.

Circulation pump

The presence in the boiler of circulation pump.

Such a pump ensures the movement of the coolant along the heating circuit, due to which the heat is evenly and efficiently distributed over the radiators. Similar devices are also available as separate devices; however, buying a boiler with a circulation pump eliminates the need to purchase additional equipment and simplifies the heating system. The disadvantages of such models include the complex design: if a separate pump fails, it is enough to replace only it, and the module built into the boiler may require complex and expensive repairs, and the heating system becomes unavailable.

Also note that it is theoretically possible to build a heating system without a pump, based on natural circulation; however, such systems have several disadvantages, so it is still preferable to use forced circulation.

Control bus

The control bus with which the boiler is compatible.

The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.

In modern heating technology, the most popular tyres are OpenTherm, eBus, Bus BridgeNet and EMS. Here are their key features:

— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time, the OpenThe...rm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.

— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.

— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.

— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).

Expansion vessel capacity

The capacity of the expansion tank supplied with the boiler.

The expansion tank is designed to drain excess water from the heating system when the total volume of liquid increases as a result of heating. It consists of two parts connected by a flexible membrane: in one, hermetically closed, there is air under pressure; in the other, excess water enters, compressing the membrane. In this way, a catastrophic increase in pressure in the heating circuit is avoided. The optimal volume of the expansion tank depends on several system parameters, primarily the volume and composition of the coolant; detailed recommendations for calculations can be found in special sources.
Vaillant eloBLOCK VE 18 often compared