Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Buderus Logamax plus GB062-24KD 25.4 kW
230 V
vs Buderus Logamax GB042-22K 21.8 kW
230 V

Add to comparison
Buderus Logamax plus GB062-24KD 25.4 kW 230 V
Buderus Logamax GB042-22K 21.8 kW 230 V
Buderus Logamax plus GB062-24KD 25.4 kW
230 V
Buderus Logamax GB042-22K 21.8 kW
230 V
Outdated Product
from $1,189.80 up to $1,374.74
Outdated Product
TOP sellers
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area203 m²174 m²
Condensing
Technical specs
Heat output25.4 kW21.8 kW
Min. heat output4.1 kW
Power supply230 V230 V
Power consumption125 W
Coolant max. T82 °С90 °С
Heating circuit max. pressure3 bar3 bar
Consumer specs
DHW min. T40 °С40 °С
DHW max. T60 °С60 °С
Performance (ΔT ~30 °C)12 L/min
Wi-Fi
"Summer" mode
Warm start
Circulation pump
Boiler specs
Efficiency110 %109 %
Combustion chamberopen (atmospheric)closed (turbocharged)
Flue diameter60/100, 80/125 mm60/100, 80/125 mm
Inlet gas pressure16 mbar
Max. gas consumption3.18 m³/h2.8 m³/h
Expansion vessel capacity8 L10 L
Expansion vessel pressure0.5 bar
Connections
Mains water intake1/2"
DHW flow1/2"
Gas supply3/4"
Central heating flow3/4"
Central heating return3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
 
gas pressure drop
water overheating
flame loss
draft control
frost protection
More specs
Dimensions (HxWxD)815x400x300 mm840x400x370 mm
Weight36 kg44 kg
Added to E-Catalogapril 2017february 2015

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Heat output

It is the maximum useful power of the boiler.

The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.

It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

Performance (ΔT ~30 °C)

The performance of a dual-circuit boiler in hot water mode when water is heated by approximately 30 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain ΔT — namely 25 °C, 30 °C and/or 50 °C. And it is worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the mode ΔT ~ 30 °C and give out at least warm water at 40 °C, the initial temperature of cold water should be about 10 °C (10 + 30=40 °C). A similar temperature can be found in wells in the warm season, and cold water in the ce...ntralized water supply system often warms up to 10 °C in the warm season. However, boilers, including dual-circuit boilers, are switched on mainly in cold weather, when the initial water temperature is noticeably lower. Accordingly, if the boiler is used as the main water heater, heating to the claimed temperatures (see "DHW min. T", "DHW max. T") often requires a greater ΔT than 30 °C, and the performance is less than indicated in this paragraph. But when operating in the preheating mode (when the water is heated to the desired temperature by an additional device like a boiler), this parameter describes the capabilities of the unit very reliably.

Wi-Fi

The boiler has a Wi-Fi module. This function is often used to remotely control the unit from a smartphone, tablet or other device. The specific features of such control may be different: for some models, you need to install a special application, for others, control is available through a page in any browser; the gadget can be connected directly or via the Internet, etc. The details of using Wi-Fi in each case should be clarified separately. Note that through such a communication channel, you can not only control the unit but also receive notifications from it — about the operating mode and parameters, about the current state, about failures and malfunctions, etc. At the same time, this function is relatively rare. In most cases, traditional control is sufficient.

"Summer" mode

It is an operating mode designed for the warm season. In this mode, it works only to provide domestic hot water, and the heating is turned off. If the boiler is equipped with an outside temperature sensor, this sensor is also switched off in summer mode so that the heating does not turn on at night when the outside temperature drops.

Warm start

Support for the warm start function by the boiler.

This function is found only in dual-circuit models (see "Type"): it accelerates the water heating for the domestic hot water system and ensures a constant leaving water temperature. To do this, the boiler automation monitors and controls the temperature of the water in the secondary heat exchanger of the boiler. The presence of a "warm start" affects the cost of the unit, but this is offset by the ease of use.
Buderus Logamax plus GB062-24KD often compared