Dark mode
USA
Catalog   /   Photo   /   Binoculars & Telescopes   /   Telescopes

Comparison Levenhuk Skyline Travel 70 vs Levenhuk Skyline Travel 50

Add to comparison
Levenhuk Skyline Travel 70
Levenhuk Skyline Travel 50
Levenhuk Skyline Travel 70Levenhuk Skyline Travel 50
Outdated ProductOutdated Product
TOP sellers
Designlens (refractors)lens (refractors)
Mount typealtazimuthaltazimuth
Specs
Lens diameter70 mm50 mm
Focal length400 mm360 mm
Max. useful magnification140 x100 x
Max. resolution magnification105 x75 x
Min. magnification10 x7 x
Aperture1/5.71/7.2
Penetrating power11.4 зв.вел
More features
Finderopticoptic
Focuserrack
Eyepiece bore diameter1.25 "0.96 "
Lens Barlow3 х3 х
Diagonal mirror
General
Tube length34 cm
Tripod height40 cm40 cm
Total weight2.7 kg2.3 kg
Added to E-Catalognovember 2017november 2017

Lens diameter

Telescope objective diameter; this parameter is also called "aperture". In refractor models (see "Design"), it corresponds to the diameter of the entrance lens, in models with a mirror (see ibid.), it corresponds to the diameter of the main mirror. Anyway, the larger the aperture, the more light enters the lens, the higher (ceteris paribus) the aperture ratio of the telescope and its magnification indicators (see below), and the better it is suitable for working with small, dim or distant astronomical objects (primarily photographing them). On the other hand, with the same type of construction, a larger lens is more expensive. Therefore, when choosing for this parameter, it is worth proceeding from the real needs and features of the application. For example, if you do not plan to observe and shoot remote (“deep-sky”) objects, there is no need to chase high aperture. In addition, do not forget that the actual image quality depends on many other indicators.

Designing and manufacturing large lenses is not an easy and expensive task, but mirrors can be made quite large without a significant increase in cost. Therefore, consumer-grade refracting telescopes are practically not equipped with lenses with a diameter of more than 150 mm, but among reflector-type instruments, indicators of 100-150 mm correspond to the average level, while in the most advanced models this figure can exceed 400 mm.

Focal length

The focal length of the telescope lens.

Focal length — this is the distance from the optical centre of the lens to the plane on which the image is projected (screen, film, matrix), at which the telescope lens will produce the clearest possible image. The longer the focal length, the greater the magnification the telescope can provide; however, keep in mind that magnification figures are also related to the focal length of the eyepiece used and the diameter of the lens (see below for more on this). But what this parameter directly affects is the dimensions of the device, more precisely, the length of the tube. In the case of refractors and most reflectors (see "Design"), the length of the telescope approximately corresponds to its focal length, but in mirror-lens models they can be 3-4 times shorter than the focal length.

Also note that the focal length is taken into account in some formulas that characterize the quality of the telescope. For example, it is believed that for good visibility through the simplest type of refracting telescope — the so-called achromat — it is necessary that its focal length is not less than D ^ 2/10 (the square of the lens diameter divided by 10), and preferably not less than D ^ 2/9.

Max. useful magnification

The highest useful magnification that the telescope can provide.

The actual magnification of the telescope depends on the focal lengths of the objective (see above) and the eyepiece. Dividing the first by the second, we get the degree of magnification: for example, a system with a 1000 mm objective and a 5 mm eyepiece will give 1000/5 = 200x (in the absence of other elements that affect the magnification, such as a Barlow lens — see below). Thus, by installing different eyepieces in the telescope, you can change the degree of its magnification. However, increasing the magnification beyond a certain limit simply does not make sense: although the apparent size of objects will increase, their detail will not improve, and instead of a small and clear image, the observer will see a large, but blurry one. The maximum useful magnification is precisely the limit above which the telescope simply cannot provide normal image quality. It is believed that, according to the laws of optics, this indicator cannot be more than the diameter of the lens in millimetres, multiplied by two: for example, for a model with an entrance lens of 120 mm, the maximum useful magnification will be 120x2 = 240x.

Note that working at a given degree of multiplicity does not mean the maximum quality and clarity of the image, but in some cases it can be very convenient; see “Maximum resolution magnification"

Max. resolution magnification

The highest resolution magnification that a telescope can provide. In fact, this is the magnification at which the telescope provides maximum detail of the image and allows you to see all the small details that, in principle, it is possible to see in it. When the magnification is reduced below this value, the size of visible details decreases, which impairs their visibility, when magnified, diffraction phenomena become noticeable, due to which the details begin to blur.

The maximum resolving magnification is less than the maximum useful one (see above) — it is somewhere around 1.4 ... 1.5 of the lens diameter in millimetres (different formulas give different values, it is impossible to determine this value unambiguously, since much depends on the subjective sensations of the observer and features of his vision). However, it is worth working with this magnification if you want to consider the maximum amount of detail — for example, irregularities on the surface of the Moon or binary stars. It makes sense to take a larger magnification (within the maximum useful one) only for viewing bright contrasting objects, and also if the observer has vision problems.

Min. magnification

The smallest magnification that the telescope provides. As in the case of the maximum useful increase (see above), in this case we are not talking about an absolutely possible minimum, but about a limit beyond which it makes no sense from a practical point of view. In this case, this limit is related to the size of the exit pupil of the telescope — roughly speaking, a speck of light projected by the eyepiece onto the observer's eye. The lower the magnification, the larger the exit pupil; if it becomes larger than the pupil of the observer's eye, then part of the light, in fact, does not enter the eye, and the efficiency of the optical system decreases. The minimum magnification is the magnification at which the diameter of the exit pupil of the telescope is equal to the size of the pupil of the human eye at night (7 – 8 mm); this parameter is also called "equipupillary magnification". Using a telescope with eyepieces that provide lower magnification values is considered unjustified.

Usually, the formula D/7 is used to determine the equal-pupillary magnification, where D is the diameter of the lens in millimetres (see above): for example, for a model with an aperture of 140 mm, the minimum magnification will be 140/7 = 20x. However, this formula is valid only for night use; when viewed during the day, when the pupil in the eye decreases in size, the actual values of the minimum magnification will be larger — on the order of D / 2.

Aperture

The luminosity of a telescope characterizes the total amount of light "captured" by the system and transmitted to the observer's eye. In terms of numbers, aperture is the ratio between the diameter of the lens and the focal length (see above): for example, for a system with an aperture of 100 mm and a focal length of 1000 mm, the aperture will be 100/1000 = 1/10. This indicator is also called "relative aperture".

When choosing according to aperture ratio, it is necessary first of all to take into account for what purposes the telescope is planned to be used. A large relative aperture is very convenient for astrophotography, because allows a large amount of light to pass through and allows you to work with faster shutter speeds. But for visual observations, high aperture is not required — on the contrary, longer-focus (and, accordingly, less aperture) telescopes have a lower level of aberrations and allow the use of more convenient eyepieces for observation. Also note that a large aperture requires the use of large lenses, which accordingly affects the dimensions, weight and price of the telescope.

Penetrating power

The penetrating power of a telescope is the magnitude of the faintest stars that can be seen through it under perfect viewing conditions (at the zenith, in clear air). This indicator describes the ability of the telescope to see small and faintly luminous astronomical objects.

When evaluating the capabilities of a telescope in terms of this indicator, it should be taken into account that the brighter the object, the smaller its magnitude: for example, for Sirius, the brightest star in the night sky, this indicator is -1, and for the much dimmer Polar Star — about 2. The largest magnitude visible to the naked eye is about 6.5.

Thus, the larger the number in this characteristic, the better the telescope is suitable for working with dim objects. The humblest modern models can see stars around magnitude 10, and the most advanced consumer-level systems are capable of viewing at magnitudes greater than 15—nearly 4,000 times fainter than the minimum for the naked eye.

Note that the actual penetrating power is directly related to the magnification factor. It is believed that telescopes reach their maximum in this indicator when using eyepieces that provide a magnification of the order of 0.7D (where D is the objective diameter in millimetres).

Focuser

The type of focuser (mechanical unit responsible for focus the image) provided in the design of the telescope. The focus procedure involves moving the eyepiece of the telescope relative to the lens; different types of focusers differ in the type of mechanism that provides such movement.

— Rack. As the name suggests, these focusers use a rack and pinion mechanism that is moved by turning a pinion gear; and this gear, in turn, is connected to the focus knob. The main advantages of rack systems are simplicity and low cost. At the same time, such mechanisms are not very accurate, moreover, they often have backlashes. In this regard, focusers of this type are typical mainly for low-cost entry-level telescopes.

— Crayford. Focusers of the Crayford system use roller mechanisms in which there are no teeth, and the movement of the eyepiece is carried out due to the friction force between the roller and the moving surface. They are considered much more advanced than rack and pinion — in particular, due to the absence of backlash and smooth focus. The only serious drawback of "crayfords" can be called a certain probability of slippage; however, due to the use of special materials and other design tricks, this probability is practically reduced to zero. Due to this, this type of focuser is found even in the most advanced professional-level telescopes.

— Threaded. The design of the threaded focuser is based on two tubes...— one is inserted into the other and seated on the thread. The movement of the eyepiece necessary for focus is carried out by rotation around the longitudinal axis — similar to how a screw moves in a thread. Such focusers are extremely simple and inexpensive, but they are subject to noticeable backlash and require regular lubrication. In addition, they are rather inconvenient for astrophotography: when adjusting the focus, you have to rotate the camera connected to the eyepiece. Therefore, this kind of focus mechanisms is quite rare, mainly in small and relatively inexpensive telescopes.

Eyepiece bore diameter

The size of the “seat” for the eyepiece, provided in the design of the telescope. Modern models use sockets of standard sizes — most often 0.96", 1.25" or 2".

This parameter is useful, first of all, if you want to buy eyepieces separately: their bore diameter must match the characteristics of the telescope. However, 2" sockets allow the installation of 1.25" eyepieces through a special adapter, but the reverse option is not possible. Note that telescopes with a rim diameter of 2 "are considered the most advanced, because in addition to eyepieces, many additional accessories (distortion correctors, photo adapters, etc.) are produced for this size, and 2" eyepieces themselves provide a wider field of view (although they are more expensive). In turn, "eyes" at 1.25 "are used in relatively inexpensive models, and at 0.96" — in the simplest entry-level telescopes with small lenses (usually up to 50 mm).