Dark mode
USA
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison Keenetic Viva KN-1910 vs TP-LINK Archer A9

Add to comparison
Keenetic Viva KN-1910
TP-LINK Archer A9
Keenetic Viva KN-1910TP-LINK Archer A9
Outdated Product
from $48.99 
Expecting restock
User reviews
0
0
0
1
TOP sellers
Main
4 powerful dipole antennas. Pair of USB ports. Proprietary KeeneticOS firmware with a modular interface and an alternative in the form of a mobile application. MU-MIMO and Beamforming. 4 gigabit LAN ports. MESH mode.
Airtime Fairness technology allows you to quickly and accurately respond to requests from client devices. Beamforming technology determines the location of the client device and optimizes the wireless signal in its direction.
Product typerouterrouter
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual-band (2.4 GHz and 5 GHz)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz400 Mbps600 Mbps
Wireless speed 5 GHz867 Mbps1300 Mbps
Connection and LAN
WAN
1 port
1 Gbps
1 port
1 Gbps
LAN
4 ports
1 Gbps
4 ports
1 Gbps
Reassignable WAN / LAN5 ports
USB 2.021
Antenna and transmitter
Number of antennas44
Antenna typeexternalexternal and internal
MU-MIMO
Gain5 dBi5 dBi
2.4 GHz antennas2
5 GHz antennas2
Transmitter power20 dBm23 dBm
Signal strength 2.4 GHz20 dBm20 dBm
Signal strength 5 GHz20 dBm23 dBm
Hardware
CPUMediaTek MT7621A
CPU cores2
Clock Speed0.88 GHz
RAM128 MB
Flash memory128 MB
Functions
Features
channel reservation
 
NAT
bridge mode
repeater
MESH mode
Beamforming
firewall
CLI (Telnet)
 
Amazon Alexa
NAT
bridge mode
 
 
Beamforming
firewall
 
More features
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client
VPN
DDNS
DMZ
DHCP server
FTP server
file server
media server (DLNA)
 
 
VPN
DDNS
DMZ
Security
Safety standards
WPA
WEP
WPA2
WPA3
802.1x
WPA
WEP
WPA2
 
 
General
Operating temperature0 °C ~ +40 °C
Dimensions159x110x29 mm244x186x33 mm
Weight270 g
Color
Added to E-Catalogfebruary 2020august 2019

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

Reassignable WAN / LAN

Reassignable WAN / LAN port in the design of the device, which can work both with an external WAN network and with a local LAN. This solution allows you to reduce the total number of connection ports and at the same time expand the functionality of the equipment for flexible adaptation to user needs.

USB 2.0

The number of USB 2.0 ports provided in the design of the device.

USB in this case plays the role of a universal interface for connecting peripheral devices to the router. The specific USB devices supported and how they are used may vary. Examples include working with a flash drive that plays the role of a drive for working in FTP or file server mode (see "Functions / Capabilities"), connecting to a printer in print server mode(see ibid), connecting a 3G modem (See "Data input (WAN-port)"), etc.

Specifically, USB 2.0 allows you to transfer data at speeds up to 480 Mbps. This is noticeably less than that of more advanced standards (starting with USB 3.2 gen1 described below), and the power supply of such connectors is low. However, even such characteristics are often quite enough, taking into account the specifics of the use of Wi-Fi devices. In addition, peripherals for newer versions can also be connected to the USB 2.0 port — the main thing is that the power supply is enough. Therefore, although this standard is considered obsolete, it is still widely used in modern wireless equipment. There are even models that provide 2 or even more USB 2.0 ports; this allows you to simultaneously use several external devices at once — for example, a 3G modem and a USB flash drive.

Antenna type

External. Outdoor antennas tend to be larger than indoor antennas, and they usually have swivel mounts that allow the rod to be placed in the optimal position, regardless of the position of the device itself. All this has a positive effect on signal strength. In addition, there are removable external antennas — if desired, they can be replaced with more powerful ones. The main disadvantage of this option can be called bulkiness.

— Internal. Antennas located inside the case are considered less advanced than external ones. In most cases, they are smaller, and the performance depends on the position of the device (although many manufacturers use technologies to compensate for this effect). At the same time, equipment with internal antennas has a neat appearance without unnecessary protruding parts.

— External / internal. The presence in the device at once of both types of antennas described above (in this case, there may be more than one of those and others). The presence of several antennas improves the quality of communication, but if they are all external, the device may turn out to be too bulky. Therefore, in some models of routers, a compromise is used: part of the antennas is hidden in the case, which has a positive effect on compactness and appearance.

2.4 GHz antennas

The total number of antennas in the router that are responsible for communication in the 2.4 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

5 GHz antennas

The total number of antennas in the router that are responsible for communication in the 5 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

Transmitter power

Rated power of the Wi-Fi transmitter used in the device. If multiple bands are supported (see “Ranges of operation”) the power for different frequencies may be different, for such cases the maximum value is indicated here.

The total transmitting power provided by the device directly depends on this parameter. This power can be calculated by adding the transmitter power and the antenna gain (see above): for example, a 20 dBm transmitter coupled with a 5 dBi antenna results in a total power of 25 dBm (in the main antenna coverage area). For simple domestic use (for example, buying a router in a small apartment), such details are not required, but in the professional field it often becomes necessary to use wireless devices of a strictly defined power. Detailed recommendations on this matter for different situations can be found in special sources, but here we note that the total value of 26 dBm or more allows the device to be classified as equipment with a powerful transmitter. At the same time, such capabilities are not always required in fact: excessive power can create a lot of interference both for surrounding devices and for the transmitter itself (especially in urban and other similar conditions), as well as degrade the quality of the connection with low-power electronics. And for effective communication over a long distance, both the equipment itself and external devices must have the appropriate power (which is far from alway...s achievable). So, when choosing, you should not chase the maximum number of decibels, but take into account the recommendations for a particular case; in addition, a Wi-Fi amplifier or MESH system often turns out to be a good alternative to a powerful transmitter.

Signal strength 5 GHz

The power of the transmitter installed in the equipment when operating in the 5 GHz band (see "Frequency Band").

This parameter directly affects the overall power and, accordingly, the communication efficiency. For more on this, see p. "Transmitter power" above, but here we separately emphasize that high power is not always required, and in some cases it is frankly harmful.
Keenetic Viva KN-1910 often compared
TP-LINK Archer A9 often compared