Dark mode
USA
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison Asus RT-AC66U B1 vs Asus RT-AC68U

Add to comparison
Asus RT-AC66U B1
Asus RT-AC68U
Asus RT-AC66U B1Asus RT-AC68U
Compare prices 1Compare prices 3
User reviews
0
11
0
TOP sellers
Main
Supports proprietary AiMesh technology to create a single Wi-Fi with other compatible asus devices.
Product typerouterrouter
In box1 device1 device
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual-band (2.4 GHz and 5 GHz)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz450 Mbps600 Mbps
Wireless speed 5 GHz1300 Mbps1300 Mbps
Connection and LAN
WAN
1 port
1 Gbps
1 port
1 Gbps
LAN
4 ports
1 Gbps
4 ports
1 Gbps
USB 2.011
USB 3.2 gen111
Antenna and transmitter
Number of antennas33
Antenna typeexternalexternal
Detachable antenna
Gain4 dBi
2.4 / 5 GHz antennas33
Transmitter power25 dBm
Hardware
CPUBroadcom BCM4708C0
CPU cores2
Clock Speed1 GHz
RAM256 MB
Flash memory128 MB
Functions
Features
 
 
NAT
bridge mode
repeater
MESH mode
firewall
 
load balancing (Dual WAN)
channel reservation
NAT
bridge mode
repeater
MESH mode
firewall
CLI (Telnet)
More features
DHCP server
FTP server
file server
 
print server
torrent client
VPN
DDNS
DMZ
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client
VPN
DDNS
DMZ
Security
Safety standards
WPA
WEP
WPA2
 
WPA
WEP
WPA2
802.1x
General
Dimensions218x148x45 mm220x160x83 mm
Weight660 g640 g
Color
Added to E-Catalogseptember 2017june 2013

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Detachable antenna

The presence of a removable antenna(or several antennas) in the design of the device.

Only external antennas can be made removable (see "Type of antennas"). This design is especially convenient for storage and transportation: it allows you to remove external equipment, making the device less bulky. In addition, many devices with this feature allow replacement of standard antennas with others (for example, more powerful ones or with a more optimal radiation pattern). Some of these models are even initially sold without antennas — in the expectation that the user will choose them himself, at his discretion; such equipment is not needed for domestic use, but it can be very convenient when selecting high-quality professional equipment. On the other hand, the detachable design reduces the reliability of the antenna mounting, increases the possibility of failures at the connection point, and increases the cost of the device. Therefore, most modern Wi-Fi equipment is still equipped with fixed antennas.

Gain

Gain provided by each device antenna; if the design provides for antennas with different characteristics (a typical example is both external and internal antennas), then the information, usually, is indicated by the highest value.

Amplification of the signal in this case is provided by narrowing the radiation pattern — just as in flashlights with adjustable beam width, reducing this width increases the illumination range. The simplest omnidirectional antennas narrow the signal mainly in the vertical plane, "flattening" the coverage area so that it looks like a horizontal disk. In turn, directional antennas (mainly in specialized access points, see "Device type") create a narrow beam that covers a very small area, but provides a very solid gain.

Specifically, the gain describes how powerful the signal is in the main direction of the antenna compared to an perfect antenna that spreads the signal evenly in all directions. Together with the power of the transmitter (see below), this determines the total power of the equipment and, accordingly, the efficiency and range of communication. Actually, to determine the total power, it is enough to add the gain in dBi to the transmitter power in dBm; dBi and dBm in this case can be considered as the same units (decibels).

In general, such data is rarely required by the average user, but it can be useful in some specific situations that specialists have to deal with. Detailed calculation methods for suc...h situations can be found in special sources; here we emphasize that it does not always make sense to pursue a high antenna gain. First, as discussed above, this comes at the cost of narrowing the scope, which can be inconvenient; secondly, too strong a signal is also often undesirable, for more details see "Transmitter power".

Transmitter power

Rated power of the Wi-Fi transmitter used in the device. If multiple bands are supported (see “Ranges of operation”) the power for different frequencies may be different, for such cases the maximum value is indicated here.

The total transmitting power provided by the device directly depends on this parameter. This power can be calculated by adding the transmitter power and the antenna gain (see above): for example, a 20 dBm transmitter coupled with a 5 dBi antenna results in a total power of 25 dBm (in the main antenna coverage area). For simple domestic use (for example, buying a router in a small apartment), such details are not required, but in the professional field it often becomes necessary to use wireless devices of a strictly defined power. Detailed recommendations on this matter for different situations can be found in special sources, but here we note that the total value of 26 dBm or more allows the device to be classified as equipment with a powerful transmitter. At the same time, such capabilities are not always required in fact: excessive power can create a lot of interference both for surrounding devices and for the transmitter itself (especially in urban and other similar conditions), as well as degrade the quality of the connection with low-power electronics. And for effective communication over a long distance, both the equipment itself and external devices must have the appropriate power (which is far from alway...s achievable). So, when choosing, you should not chase the maximum number of decibels, but take into account the recommendations for a particular case; in addition, a Wi-Fi amplifier or MESH system often turns out to be a good alternative to a powerful transmitter.

CPU

The model of the processor installed in the device. The processor is responsible for processing network traffic and running software. Knowing its name, you can get more detailed data on the speed capabilities of the equipment and understand how much such a powerful or, on the contrary, mediocre element is needed on board. In new models of Wi-Fi equipment, coprocessors or so-called NPU modules are often installed, which relieve the load from the main processor.

Most often, Wi-Fi equipment is equipped with processors from Broadcom, MediaTek, Realtek and Qualcomm.

CPU cores

The number of cores in the processor installed in the device. The core in this case refers to the part of the processor that executes one thread of instructions. Accordingly, the presence of multiple cores (there are 2-core models, 3 and on 4 cores) allows you to work with multiple threads simultaneously, which has a positive effect on performance.

Clock Speed

The number of cycles per second that the processor produces in its normal operating mode. A clock is a single electrical impulse used to process data and synchronize the processor with the rest of the computer system. Different operations may require fractions of a clock or several clocks, but anyway, the clock frequency is one of the main parameters characterizing the performance and speed of the processor — all other things being equal, a processor with a higher clock frequency will work faster and better cope with significant loads.

RAM

The amount of random access memory (RAM) provided in the device. The amount of "RAM" is one of the indicators of the power of the device: the larger it is, the higher the speed and the better the device will cope with "heavy" tasks. Among the values, there can be 128 MB, 256 MB, 512 MB and high scores in 1 GB and 2 GB.

Flash memory

The amount of memory allocated for the operation of the operating system on board the router. It stores the OS and the control programme. Note that Flash memory is not available for use by the end user.
Asus RT-AC66U B1 often compared
Asus RT-AC68U often compared