USA
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison Marshall Monitor Bluetooth vs Sennheiser HD 4.40 BT

Add to comparison
Marshall Monitor Bluetooth
Sennheiser HD 4.40 BT
Marshall Monitor BluetoothSennheiser HD 4.40 BT
Compare prices 1
from $149.00 
Outdated Product
TOP sellers
Main
Output for additional headphones
NFC chip.
Connection and design
Design
overhead, closed
full size Over-Ear
foldable
overhead, closed
full size Over-Ear
foldable
Microphonebuilt into the bodybuilt into the body
Connection typecombinedcombined
Connection
mini-Jack (3.5 mm)
Bluetooth v 4.0
mini-Jack (3.5 mm)
Bluetooth v 4.0
PlugL-shaped45° angle
Cable supplysingle-sidedsingle-sided
Cable length1.4 m
Range10 m10 m
Cable typecoiledround
Detachable cable
Specs
Soundstereostereo
Impedance28 Ohm18 Ohm
Frequency range20 – 20000 Hz18 – 22000 Hz
Sensitivity92 dB113 dB
Speaker size40 mm
Emitter typedynamicdynamic
Microphone specs
Frequency range100 – 10000 Hz
Features
Volume control
NFC
Codec support
aptX
aptX
Power supply
Power sourcebatterybattery
Operating time (music)30 h25 h
Charging portmicroUSB
General
Weight225 g
In box
case
 
case
additional cable
Color
Added to E-Catalogjuly 2017january 2017

Plug

The design of the plug provided in the headphones. This parameter is relevant primarily for models with a mini-Jack interface (see "Connection") — the rest of the plugs are made straight in most cases, exceptions are extremely rare.

Direct. The traditional, most simple and unpretentious option is plugs that do not have any bends. Usually, they are compatible without restrictions with stationary audio equipment, PCs, laptops, etc. But for smartphones and other portable gadgets, this option is not always optimal — it all depends on how the gadget is located in your pocket or case. In some cases — for example, when carrying a smartphone in a regular pants pocket — such a wire can be strongly bent around the plug, which quickly becomes unusable; in such cases it is worth paying attention to L-shaped or curved plugs (see below).

L-shaped. Plugs angled at 90° in the shape of the letter L. Designed primarily for use with smartphones and other handheld devices: such devices, when worn, can be positioned in such a way that a bent plug is more convenient than a straight one. However, the L-shaped design may also be the best choice for stationary equipment, where the headphone wire approaches the connector at a right angle — for example, this situation is often found in computers and laptops.

At an angle of 45°. A variation of the L-shaped plug...described above, bent not at a straight line, but at a smaller angle (not necessarily exactly 45 °). It is also designed primarily for pocket equipment, and with such an application, such plugs are considered even more convenient and reliable than traditional L-shaped ones. But for stationary devices, it hardly makes sense to specifically look for a model with a similar connector (although such an application is technically quite possible).

Cable length

The length of the cable supplied with the headphones with the appropriate connectivity.

The optimal cable length depends on the planned format of the "ears". So, for pocket gadgets, 1 metre or less is often enough, for a computer it is already desirable to have a wire for 1 – 2 m, and preferably 2 – 3 m. And models with a longer cable length — 3 – 5 m or even more — are mainly designed for specific tasks, such as connecting to a TV or using in recording studios.

Recall that in some models the cable is removable (see below) and can be replaced if necessary with a longer or shorter one. Also note that there are extension cables that allow you to increase the length of the main wire; such a cable may even be included in the delivery, this point (and the length of the additional cable) is usually specified in the notes.

Cable type

The type of cable provided in the design or package of the headphones. Note that this parameter is relevant both for wired or combined models (see "Type of connection"), and for some wireless models - in particular, earbuds and in-ear headphones without attachment, where the wire connects one earphone to another.

- Round. Classic round wire - straight, without braid and other additional devices. It is inexpensive and in most cases quite practical, which is why it is found in most modern headphones. The disadvantage is that with a small thickness, the round wire tends to tangle; therefore, this option is considered not very convenient for compact headphones, such as in-ear or in-ear headphones (see "Design"), which often have to be carried in a pocket or bag.

- Flat. The main advantage of a flat cable is that it is not as tangled as a round one, and in which case it is much easier to unravel. This is especially important for earbuds and in-ear headphones, which are often rolled up for storage or portability. However, larger overhead models can also be equipped with a flat wire.

- Drawstring around the neck. A wire adapted in one way or another to be worn around the neck - for example, having the form of a loop from which two separate headphones depart. The main advantage of this design is the convenience for constant wear: if necessary, you...can remove the headphones and leave them hanging on a cord, and then quickly put them back on. It is worth noting here that this option is found mainly among liners and in-ear models, for which the mentioned advantage is especially relevant.

- Round, braided. Round wire, supplemented with an outer braid - usually fabric. See above for more details on round wire. And the presence of a braid gives such a cable a number of advantages over the classic, in "bare" insulation. So, the wire turns out to be more durable, reliable and resistant to kinks and pressures, less confused, has a solid appearance, and in some models the braid also provides shielding from external interference. The reverse side of these advantages is the increased price.

- Spiral. Round cable, coiled in the form of a spring. The main advantages of spiral wire are that it practically does not tangle and can be noticeably stretched relative to its original length. The latter is very convenient if in the course of using the "ears" you have to change the distance to the signal source. The disadvantages of a spiral cable are bulkiness and relatively high cost. Therefore, it is often used in headphones of medium and top levels (including professional models).

- Round, braided. Cable in the form of two wires twisted into a spiral. Do not confuse this option with a spiral wire - in this case we are not talking about a spring. Such a cable is notable primarily for its unusual appearance; for greater originality, the wiring can be made multi-colored. It is also slightly more tangle-resistant than the classic round, although much depends on the thickness here. At the same time, individual wires can be noticeably thinner than a solid round wire, which somewhat reduces reliability.

- Zipper. Reversible wire (see "Cable entry"), in which the individual wires are hidden inside the halves of the zipper. The fastener does not cover the entire length of the cable, but usually takes up half, or even more. The headphones themselves with a similar wire most often belong to miniature varieties - in-ear or in-ear. Such models are very convenient in “packing” and “unpacking” for storage and carrying: by zipping up, you can connect two wires into one, and when you need the headphones again, you can unzip them by separating them. At the same time, the fastened zipper is very resistant to tangling. Yes, and this accessory looks quite unusual.

- In the form of a lace. A wire that looks like a lace - like tech used in shoes or clothing. Do not confuse such a cable with a cord around your neck (see above) - in this case, we mean not the way the wire is worn, but a specific type of braid. Such a wire is comparable in width to a flat wire, due to which it resists tangling well. However, the main advantage of this option is still the original appearance: “laces” are often made in bright colors, can be painted in several colors, complemented by a pattern, etc.

Impedance

Impedance refers to the headphone's nominal resistance to AC current, such as an audio signal.

Other things being equal, a higher impedance reduces distortion, but requires a more powerful amplifier — otherwise the headphones simply will not be able to produce sufficient volume. Thus, the choice of resistance depends primarily on which signal source you plan to connect the "ears". So, for a portable gadget (smartphone, pocket player), an indicator of 16 ohms or less is considered optimal, 17 – 32 ohms is not bad. Higher values — 33 – 64 ohms and 65 – 96 ohms — will require quite powerful amplifiers, like those used in computers and televisions. And models with a resistance of 96 – 250 ohms and above are designed mainly for Hi-End audio equipment and professional use; for such cases, detailed recommendations for selection can be found in special sources.

Frequency range

The range of audio frequencies that headphones can reproduce.

The wider this range — the more fully the headphones reproduce the spectrum of sound frequencies, the lower the likelihood that too low or too high frequencies will be inaccessible. However, some nuances should be taken into account here. First of all, we recall that the range of perception of the human ear is on average from 16 Hz to 22 kHz, and for the full picture it is enough that the headphones cover this range. However, modern models can noticeably go beyond these limits: in many devices, the lower threshold does not exceed 15 Hz, or even 10 Hz, and the upper limit can reach 25 kHz, 30 kHz, and even more. Such extensive ranges in themselves do not provide practical advantages, but they usually indicate a high class of headphones, and sometimes they are only given for promotional purposes.

The second important point is that an extensive frequency range in itself is not a guarantee of good sound: the sound quality also depends on a number of parameters, primarily the frequency response of the headphones.

Sensitivity

Rated headphone sensitivity. Technically, this is the volume at which they sound when a certain standard signal from the amplifier is connected to them. Thus, sensitivity is one of the parameters that determine the overall volume of the headphones: the higher it is, the louder the sound will be with the same input signal level and other things being equal. However, we must not forget that the volume level also depends on the resistance (impedance, see above); moreover, it is worth choosing “ears” for a specific device first by impedance, and only then by sensitivity. In this case, one parameter can be compensated for by another: for example, a model with high resistance and high sensitivity can work even on a relatively weak amplifier.

As for specific figures, headphones with indicators of 100 dB or less are designed mainly for use in a quiet environment (in some similar models, the sensitivity does not exceed 90 dB). For use on the street, in transport and other similar conditions, it is desirable to have more sensitive headphones — about 101 – 105 dB, or even 110 dB. And in some models, this figure can reach 116 – 120 dB. and even more.

It is also worth noting that this parameter is relevant only for a wired connection according to the analogue standard — for example, via a 3.5 mm mini-...jack. When using digital interfaces like USB and wireless channels like Bluetooth, the sound is processed in the built-in headphone converter, and if you plan to mainly use this kind of application, you can not pay much attention to sensitivity.

Speaker size

The diameter of the speaker installed in the headphones; models with multiple drivers (see "Number of drivers"), usually, the size of the largest speaker is taken into account, other dimensions can be specified in the notes.

In general, this parameter is relevant primarily for over-ear headphones (see "Design"). In them, emitters can have different sizes; the larger it is, the more saturated the sound is and the better the speaker reproduces the bass, however, large emitters have a corresponding effect on the dimensions, weight and price of the headphones. But in-ear "ears" and earbuds, by definition, have very small speakers, and rich bass in them is achieved due to other design features.

Frequency range

The range of audio frequencies that the headphone's own microphone can normally "hear".

Theoretically, the wider this range, the more advanced and high-quality the microphone is, the closer the sound transmitted by it is to the real one. In fact, extensive frequency coverage is not always required. So, the working range of the human ear is about 16 – 22,000 Hz, and even then not everyone hears its upper part. And human speech usually covers frequencies from 500 Hz to 2 kHz, at least this range is considered quite sufficient for its transmission. So if you need a microphone for simple tasks like voice communication on the Internet or game chat, you can not pay much attention to the frequency range: even in the most modest models, it is more than sufficient for normal speech transmission.

NFC

NFC is a short-range wireless communication technology (up to 10 cm). One of the most popular ways to use this feature on your headphones is to automatically connect via Bluetooth (see "Connecting"). When these Bluetooth “ears” are brought near an NFC-compatible signal source (for example, a smartphone), the devices automatically recognize each other, configure the connection settings, and the user only has to confirm the connection. In addition, other options for using this technology may be provided — for example, automatic playback start when you bring headphones to the player.
Marshall Monitor Bluetooth often compared
Sennheiser HD 4.40 BT often compared