USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison Sturm Professional AW97PA350P vs Sturm AW97PA310

Add to comparison
Sturm Professional AW97PA350P
Sturm AW97PA310
Sturm Professional AW97PA350PSturm AW97PA310
Outdated ProductOutdated Product
TOP sellers
Main
Ability to work from a network with low voltage — 160 V
Ability to work from a network with low voltage — 160 V
Typesemi-automatic invertersemi-automatic inverter
Welding type
MMA
MIG/MAG
MMA
MIG/MAG
Specs
Welding currentDCDC
Input voltage230 V230 V
Power consumption8.5 kVA8 kVA
Open circuit voltage60 V65 V
Min. welding current20 А20 А
Max. welding current310 А310 А
Duty cycle80 %80 %
Max. electrode size5 mm5 mm
Minimum wire diameter0.6 mm0.6 mm
Max. wire diameter1.2 mm1.2 mm
Wire feed speed14 m/min10 m/min
More features
Hot Start
Anti-Stick
digital display
Hot Start
Anti-Stick
digital display
Coil locationinternalinternal
Detachable welding cable (MIG/MAG)removableremovable
General
Protection class (IP)2121
Insulation classHH
Electrode holder cable3 m
Mass cable2 m
Torch cable4 m
Weight11.22 kg9.9 kg
Added to E-Catalogjanuary 2020february 2019

Power consumption

Power consumption of the welding machine, expressed in kilovolt-amperes.

kVA is a unit of power used in welding machines along with the more traditional kilowatts. The physical meaning of both units is the same — current multiplied by voltage; however, they denote different parameters. So, in kilowatts, only a part of the total power consumption is recorded — active power (goes to do work and to losses due to heating of individual parts); according to this indicator it is convenient to calculate the practical capabilities of the device. And kilovolt-amperes denote the total energy consumption — it also takes into account reactive power (it goes to losses in coils and capacitors during the operation of alternating current circuits). This data is useful for calculating the total load on the network or other power source.

The apparent power input in kVA will always be greater than the power in kW. However, some manufacturers go to the trick and indicate full power not at full, but at partial (for example, half) load. This gives the impression of efficiency, but is incorrect from a technical point of view. As for the ratio of energy consumption, the active power in kW is often 20-30% lower than the apparent power in kVA. So, in terms of kilovolt-amperes, it is quite possible to evaluate the performance of the unit.

As for specific values, in the most modest models they do not exceed 3 kVA. An indicator up to 5 kVA is considered low, up to 7 kVA — average, and in the most powerful units, the power consumption can reach 10 kVA or even more.

Open circuit voltage

The voltage supplied by the welding machine to the electrodes. As the name suggests, it is measured without load — i.e. when the electrodes are disconnected and no current flows between them. This is due to the fact that at a high current strength characteristic of electric welding, the actual voltage on the electrodes drops sharply, and this does not make it possible to adequately assess the characteristics of the welding machine.

Depending on the characteristics of the machine (see "Type") and the type of work (see "Type of welding"), different open circuit voltages are used. For example, for welding transformers, this parameter is about 45 – 55 V (although there are higher voltage models), for inverters it can reach 90 V, and for semi-automatic MIG / MAG welding, voltages above 40 V are usually not required. Also, the optimal values \u200b\u200bdepend on type of electrodes used. You can find more detailed information in special sources; here we note that the higher the open-circuit voltage, the easier it is usually to strike the arc and the more stable the discharge itself.

Also note that for devices with the VRD function (see "Advanced"), this parameter indicates the standard voltage, without reduction through VRD.

Wire feed speed

Wire feed speed provided by the semi-automatic model (see "Type"). The higher the speed (with the same thickness) — the faster you can lead the electrode over the seam and the less time the process takes. On the other hand, too fast feed makes it difficult to work with seams of small length. Detailed information on the optimal wire feed speed can be found in special sources.

Electrode holder cable

The length of the electrode holder cable supplied with the device.

As the name implies, this cable is used to connect the clamp for the welding electrode to the machine. The longer such a wire is, the more freedom the welder has in moving, the farther he can go without moving the machine itself. On the other hand, excessively long cables create problems in storage and transportation, and often during operation (you need to look for a place where to place the excess wire). Therefore, when choosing, you should proceed from what is more important for you: the ability to move away from the device or the overall compactness. As for specific numbers, most often the length of this wire varies from 2 to 3 m, but in some models it can reach 5 m.

Mass cable

The length of the ground cable supplied with the machine.

The mass cable is a wire that is connected to the workpiece with a clamp. In other words, this is the second contact required to close the circuit during electric welding; connecting such a wire actually turns the workpiece into one solid fixed electrode (paired with a movable welding electrode). As for the length of such a wire, the longer it is, the farther from the connection point you can place the machine and the more freedom of movement the welder gets. On the other hand, excessively long wires create problems in storage and transportation, and often during work (you need to look for a place where to place the excess cable). In addition, freedom of movement can be ensured by increasing the length of the second wire — for the electrode holder or burner. Thus, the mass cable in modern welding machines usually has a length of 1.2 to 3 m (with some exceptions — both smaller and larger). This length allows you to comfortably place the device and at the same time does not create problems.

Torch cable

The length of the torch cable supplied with the machine.

The term "torch" is relevant for welding such as TIG (in argon, non-consumable electrode) or MIG / MAG (partially automated welding in an inert (MIG) or active (MAG) gas) - this is what the working nozzle for such welding is called. And the longer the wire with which the burner is connected to the device, the more freedom the welder has in moving, the farther he can go without moving the device itself. On the other hand, excessively long cables create problems in storage and transportation, and often during operation (you need to look for a place where to place the excess wire). Therefore, when choosing, you should proceed from what is more important for you: the ability to move away from the device or the overall compactness. As for specific length options, they usually range from 2 to 5 meters.
Sturm Professional AW97PA350P often compared
Sturm AW97PA310 often compared