Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Water Heaters

Comparison Hotpoint-Ariston ABS VLS EVO Wi-Fi PW 50 vs Electrolux EWH 50 Centurio IQ 2.0

Add to comparison
Hotpoint-Ariston ABS VLS EVO Wi-Fi PW 50
Electrolux EWH 50 Centurio IQ 2.0
Hotpoint-Ariston ABS VLS EVO Wi-Fi PW 50Electrolux EWH 50 Centurio IQ 2.0
Outdated ProductOutdated Product
User reviews
6
0
0
0
TOP sellers
Main
The heating process can be controlled via Wi-Fi.
Possibility of control over the Internet. Wi-Fi module sold separately
Typestoragestorage
Energy sourcemainsmains
Installationuniversal (wall)universal (wall)
Tank volume50 L50 L
2 tanks
Tank shapeflatflat
Technical specs
Power source230 V230 V
Power consumption2500 W2000 W
Heating modes23
Max. water temperature80 °C75 °C
Heat loss1.2 kWh/24h
Tank liningenamelstainless steel
Water supplywith pressurewith pressure
Heating time62 min114 min
Magnesium anode
Heating elements22
Heating element type
wet heater
 
 
dry heater
Features
Functions
thermostat
Smart (auto mode)
programmer
display
control via Intermet
thermostat
 
programmer
display
 
Safety systems
overheat protection
frost protection
dry heating protection
electrical protection (RCD)
safety valve
anti-legionella
overheat protection
frost protection
dry heating protection
 
safety valve
anti-legionella
General specs
Controlselectronicelectronic
Controls layoutfrontfront
Wi-Fi module connection
Pipe connectioninstallation dependentinstallation dependent
Tank manufacturer's warranty5 years8 years
Dimensions (HxWxD)77.6x50.6x27.5 cm93x43.4x25.3 cm
Weight15 kg15.5 kg
Added to E-Catalogoctober 2019june 2018

2 tanks

The presence of 2 water tanks in the storage water heater; usually, the total volume is divided equally between these tanks.

This design is noticeably more complex and expensive than the traditional 1-tank arrangement but offers several advantages. Firstly, the tanks can be heated in turn, which significantly speeds up the process. After all, for hot water to be used, it is enough to warm up only half of the total volume to the operating temperature. Secondly, with this format of work, power consumption and the load on the power grid are reduced. And if at a certain moment, the user does not need a lot of water, then the energy consumption turns out to be small (again, because the entire volume does not need to be heated). Thirdly, compared to traditional models of the same volume, such boilers are thinner, which can simplify installation (the price for this advantage is an increase in width, but this moment is not so often critical). Fourth, this arrangement improves thermal insulation and reduces heat loss.

Power consumption

Electrical power consumed by the heater during operation.

This parameter is of key importance for electric models (see "Energy source"). In them, the power consumption corresponds to the power of the heating element and, accordingly, the heat output of the entire device. The overall efficiency and flow rate of the water heater directly depend on the useful power. Accordingly, high-flow rate models inevitably have high consumption. At the same time, we note that the heating power is selected by the designers in such a way as to guarantee the necessary flow rate and water temperature. So when choosing a device according to flow rate, you need to look primarily at flow rate and temperature. Power must be taken into account when connecting: for example, if a 220 V model (see "Power source") consumes more than 3.5 kW, it, as a rule, cannot be plugged into a regular outlet — connection is required according to special rules. And the most productive and high-powered models — 10 kW or more — are connected only to three-phase mains.

The power consumption has a similar value for combined boilers — adjusted for the fact that in them the electric heater is an additional source of heat. For gas and indirect models, this parameter describes the power consumption of control circuits and other auxiliary structural elements; this power consumption is usually very small — on the order of several tens of watts, less often up to 1.5 kW.

Heating modes

The number of heating modes provided in the device.

This parameter is specified only for models with several heating modes. We emphasize that you should not confuse such functionality with temperature control (see "Features"). The heating mode is the general format of the device; these formats differ primarily in such parameters as the actual heating power, the number (and in combined models, and types) of the heating elements involved, etc. The thermostat, if it is in the design, allows you to change the temperature within a specific mode.

In general, the presence of several heating modes expands the functionality of the water heater but affects its cost. Of course, the specific features of these modes do not hurt to clarify in advance before buying.

Max. water temperature

The highest water temperature provided by the device. The standard temperature of hot water in the water supply is 60 °C, and this value is actually the minimum for modern water heaters: models with more modest rates (usually from 40 °C) are extremely rare. But higher values can be found much more often: for example, water heaters of 75 °C and 80 °C are very popular, and in the most powerful models in this regard, the temperature can reach 95 °C and even higher.

On the one hand, strong heating requires appropriate power (which is especially noticeable in the case of instant electric heaters). On the other hand, the higher the temperature of hot water, the less it is needed for a comfortable outlet temperature, after mixing with cold water; this reduces the consumption of heated water, which is especially important for storage boilers. In addition, many models have thermostats (see "Features").

Also, note that heating to operating values may involve different ΔT (degree of temperature change) — depending on the initial temperature of the cold water. The actual performance of the heater directly depends on ΔT; this moment is described in more detail below, in the paragraphs devoted to performance at different ΔT.

Heat loss

Heat losses arising in the storage water heater due to imperfect thermal insulation of the tank.

No insulating material, even the highest quality, can completely prevent heat from escaping to the outside. This paragraph just indicates the amount of heat that “leaks” through the thermal insulation of the boiler per day; to maintain the temperature, this leakage must be compensated by additional heating, even if no water is consumed. So from a practical point of view, heat loss is the amount of energy that the heater spends solely on maintaining the temperature of the water inside. Accordingly, the lower this indicator, the more effective the thermal insulation and the more economical the device is in terms of energy consumption. On the other hand, a decrease in heat loss inevitably affects at least the cost, and often also the size and weight of the heater.

Note that this parameter is indicated for standard conditions: a filled tank, heated to operating temperature, zero water flow and a certain outdoor temperature (usually about 20 °C). Under other conditions, the actual level of heat loss may differ from the claimed one in one direction or another. Nevertheless, according to this characteristic, it is quite possible to compare different models directly: lower heat losses claimed by the manufacturer will mean more economical energy consumption.

Tank lining

Enamel. Like plastic, enamel is chemically neutral and does not affect the taste and smell of water, while it is considered more durable. Theoretically, this material is prone to the appearance of microcracks, including due to temperature differences (which eventually lead to water contact with metal and corrosion). However, high-quality heat-resistant enamels are most often used in boilers, which have the same coefficient of thermal expansion as the material of the tank and are damaged only in case of violation of operating conditions (or with strong impacts). So the mentioned drawback is typical mainly for the most inexpensive models with appropriate quality materials.

Stainless steel. Due to its high strength, stainless steel is considered the most reliable and durable material today. Unlike enamelled ones, such tanks are absolutely not afraid of temperature changes, and they also normally withstand hits including pretty strong ones. On the other hand, steel is noticeably more expensive than enamel. At the same time, for such containers, the possibility of corrosion is not ruled out — especially when it comes to cheap devices that use outdated welding technologies, and the material of the seams may differ from the material of the tank. To eliminate this phenomenon, cathodic protection is required, which further affects the cost.

Glass ceramics....Material, in many respects similar to the enamel described above. On the one hand, glass ceramic does not react with water, does not affect its taste and properties, and is also considered quite reliable. On the other hand, this material is more brittle and prone to the appearance of microcracks and the loss of its properties — both as it wears out and due to strong heating. Because of this, such water heaters usually have a recommended temperature limit of 60 °C.

Plastic. Plastic is chemically resistant, not subject to corrosion and practically does not affect the composition of water, besides it is inexpensive. The main disadvantage of plastic coating is considered to be fragility.

— Copper. Copper coating is used exclusively in instant water heaters (see "Type"); more precisely, in such devices, the entire tank is usually made of copper. This material is not suitable for a storage tank: copper is too heavy, and it has a corrosive effect on some materials (aluminium, cast iron) due to its electrochemical properties, even if these materials are used outside the heater, in other parts of the water supply system. However, in a small tank in an instant water heater, these moments are invisible, while copper perfectly tolerates compression and tension during temperature changes.

— Titanium-cobalt alloy. A special alloy, characterized by the highest strength and resistance to corrosion, but also very expensive. It is extremely rare, only in top-level heaters.

Heating time

Time to heat the storage tank (see "Type"), filled with cold water, to operating temperature.

It is worth remembering that this characteristic is not 100% accurate. Manufacturers usually indicate the heating time for certain conditions: a filled tank, maximum heating intensity, and temperature rise (∆T) by a certain number of degrees. In practice, the heating time may differ, both one way and the other. For example, if the heating time for the device is 20 minutes at ∆T = 50 °C, then when the water is heated from 15 °C to 60 °C, the time will be shorter (∆T = 45 °C). Nevertheless, this indicator allows us to evaluate the overall flow rate of the boiler, and with equal ∆T and volumes, different models can be compared in terms of heating time.

Heating element type

Open coil. The open coil is made from a high-resistance electrical wire enclosed in a thin insulating sheath. The main advantages of such an element are the heating rate, high efficiency and precise temperature control; in addition, scale is almost not formed on the spiral. And of the shortcomings — a low service life.

Wet heating element. Wet heater is a metal tube with a heating thread laid in the centre; the space between the tube and the thread is filled with an insulating material with good thermal conductivity. Heating elements heat up more slowly than open coils, have lower efficiency and are prone to the formation of scale on them; on the other hand, their service life is much longer, and in instant heaters, heating elements are not so sensitive to air pockets.

Dry heating element. A kind of heating element with an improved design: the heater tube is enclosed in an additional shell (most often made of metal with an enamel coating on the outside) and does not come into contact with water, hence the name. Thanks to this, the likelihood of scale formation is reduced, which is especially important when working with hard water. Also, the replacement of such elements is significantly easier than conventional ones. Among their shortcomings can be called a rather high cost.

Infrared heating element. Tu...bular electric heater of a special design: in the form of a transparent glass tube, in which the incandescent spiral is enclosed. The principle of operation of such an element is somewhat different from a conventional heating element: a significant part of the heating is provided by infrared radiation, which heats not so much the water as the walls of the tank — and heat is already transferred from them to the water. Thus, the water is heated not only at the point of contact with the heating element but also at the point of contact with the walls — which means that the heating is faster and more uniform. Also, note that the IR heater itself is usually "dry"; see above for the advantages of this design. The main disadvantages of such heaters are high cost and relatively short service life.

— Heat exchanger. It is used in gas and indirect heaters (see Water heater type). It is a metal structure heated by burning gas (in gas heaters) or passing inside a heated coolant (in indirect heaters). Usually has a ribbed shape. It is done to ensure the maximum area of contact with the heated water with relatively small dimensions — the larger this area, the more heat is transferred to the water per unit of time and the more efficient the heater is.

Functions

Among the functions of the water heater there are thermostat, water flow regulator, Smart (auto mode), programmer, display and control via the Internet. More about each of them

— Thermostat. A device that allows you to control the temperature of the water at the outlet of the heater. In storage models (see "Type"), the thermostat sets the maximum temperature for heating water in the tank; in instant devices, this function is carried out by changing the intensity of heating.

— Automatic water flow regulator. It is used in instant water heaters. Since the water in such devices heats up in the process of its movement through the heater, the higher the speed of water movement (the greater the pressure), the lower the heating temperature, and if the pressure is too high, the power of the device may simply not be enough for effective heating. The use of an automatic water flow regulator avoids this — this system regulates the speed of water movement through the heater, limiting it if necessary.

— Smart (auto mode). A special “smart” mode in which the boiler is controlled (primarily the intensity of heating) automatically. Specific features of this mode may vary depending on the model. However, the following format of operation is most common: during...the first week of use, the device remembers at what time of the day the hot water was used, and then the heater’s operating mode adjusts to this data. Thus, the water heater provides the user with hot water at the right time and, at the same time, does not waste energy on heating during hours when heating is not needed.

— Programmer. The presence of a programmable thermostat — a device that allows not only to maintain the temperature but also to programme the operation of the device for a certain period. The simplest programmers work like a timer, turning on at the right time (vacation or holiday mode, when the device is not active for several days, and when the family returns to the house, it will turn on and heat the water). More advanced ones allow you to set the mode of operation for individual days. Either way, this feature provides added convenience and eliminates the need to constantly adjust the operation of the device manually. On the other hand, the presence of a programmer affects the cost.

— Display. Usually, a simple LCD screen with a few characters is used as a display. However, even such equipment significantly increases the convenience and information content of management. Various service data can be shown on the display — from the temperature of the water in the tank to messages about malfunctions and failures. This feature slightly increases the cost of the device, but compared to the total cost of the heater, this moment is usually insignificant.

— Control via the Internet. The specific nuances of such control may vary: for example, some models use a special application installed on a smartphone or tablet, while others can work through a regular browser from any computer. However, this function allows you to control the heater from almost anywhere in the world — provided that there is access to the Internet. In addition, with this control, the user can also monitor the status of the device and receive various notifications (on and off, about the temperature of the water in the tank, about various problems, etc.).
Hotpoint-Ariston ABS VLS EVO Wi-Fi PW often compared
Electrolux EWH Centurio IQ 2.0 often compared