Ashburn
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Water Heaters

Comparison Banzai 80DINOX24 vs Gorenje FTG 100 SMV9

Add to comparison
Banzai 80DINOX24
Gorenje FTG 100 SMV9
Banzai 80DINOX24Gorenje FTG 100 SMV9
Outdated Product
from $199.76 up to $273.52
Outdated Product
TOP sellers
Typestoragestorage
Energy sourcemainsmains
Installationverticaluniversal (wall)
Tank volume80 L100 L
2 tanks
Tank shapeflatflat
Technical specs
Power source230 V230 V
Power consumption2400 W
2600 W /1600+1000 Вт/
Max. water temperature75 °C75 °C
Tank liningstainless steelenamel
Water supplywith pressurewith pressure
Heating time100 min
192 min /при ∆t=55°С/
Magnesium anode
Heating elements32
Heating element type
 
dry heater
wet heater
 
Features
Functions
thermostat
 
thermostat
Smart (auto mode)
Safety systems
overheat protection
 
 
safety valve
 
overheat protection
frost protection
dry heating protection
safety valve
anti-legionella
General specs
Controlsmechanicalelectronic
Controls layoutfrontfront
Pipe connectionbottominstallation dependent
Tank manufacturer's warranty5 years5 years
Dimensions (HxWxD)100.6x49.3x27 cm163.5x49x29.7 cm
Weight18 kg58 kg
Added to E-Catalognovember 2018november 2015

Installation

The regular way to install a water heater.

The choice for this parameter depends primarily on how much free space is available for installing the device and what shape this space has. Therefore, when there is a lot of space (for example, the user has an entire wall in the boiler room of a private house at his disposal), this parameter can be ignored. But in cramped conditions, each installation method will have its nuances.

Vertical. Vertical arrangement devices, elongated in height. This option is well suited for narrow cramped spaces — for example, a bathroom in a small city apartment.

Horizontal. The horizontal layout is less suitable for tight spaces than the vertical one but in some conditions, it may be optimal — for example, if the place under the device looks like a low horizontal niche. Also, note that many instant water heaters are produced in this design (see "Type") — they do not take up much space, and horizontal orientation is considered optimal for such devices for several reasons.

Floor. Floorstanding models (as opposed to all of the wall mount options described above). The main advantage of such an installation is simplicity: there is no need to drill walls and prepare other special fasteners; it is enough to have free space on the floor. In addition, weight restrictions are not so critical for floor water h...eaters, and this method can be used even for the most powerful, capacious and, accordingly, large models. On the other hand, free space on the floor is not always available, and this installation method is not suitable for cramped conditions.

— Universal (wall mounted). Devices that can be placed in any position — both horizontal and vertical (see above for details). The advantage of this option is obvious: the user can choose the installation method of his choice, depending on the situation.

Tank volume

The volume of the tank installed in the storage water heater (see "Type"). It is one of the key parameters for such devices. On the one hand, a large tank allows you to keep a large supply of water and reduces the risk that it will run out at the most inopportune moment; this is especially important when water consumption is high, such as in a large family. On the other hand, a volumetric tank correspondingly increases the size, weight and cost of the entire device, requires reliable fastenings (when installed on a wall), and more energy is spent on heating and maintaining the temperature of the water in it. Accordingly, when choosing, it is worth not chasing the maximum volume but proceeding from the actual water consumption and this point of view determining the optimal capacity of the tank.

Some special tables and formulas allow you to calculate the optimal volume of the tank depending on the format of use (washbasin, shower, kitchen sink ...), the temperature of the water used and other parameters. These data can be found in special sources. Here we note that the smallest storage water heaters can hold only 5 litres; such devices are designed for washing, washing dishes for 1 – 2 people and other tasks that do not require a lot of water. The average value is considered to be a volume of 80 – 100 litres, such a tank is quite enough for an apartment in which 3 – 4 people live. In the largest models, the volume is already calculated in cubic metres; such water he...aters are designed, for example, for hotel buildings, showers in sports complexes and swimming pools, and other similar places where a lot of hot water is required.

Power consumption

Electrical power consumed by the heater during operation.

This parameter is of key importance for electric models (see "Energy source"). In them, the power consumption corresponds to the power of the heating element and, accordingly, the heat output of the entire device. The overall efficiency and flow rate of the water heater directly depend on the useful power. Accordingly, high-flow rate models inevitably have high consumption. At the same time, we note that the heating power is selected by the designers in such a way as to guarantee the necessary flow rate and water temperature. So when choosing a device according to flow rate, you need to look primarily at flow rate and temperature. Power must be taken into account when connecting: for example, if a 220 V model (see "Power source") consumes more than 3.5 kW, it, as a rule, cannot be plugged into a regular outlet — connection is required according to special rules. And the most productive and high-powered models — 10 kW or more — are connected only to three-phase mains.

The power consumption has a similar value for combined boilers — adjusted for the fact that in them the electric heater is an additional source of heat. For gas and indirect models, this parameter describes the power consumption of control circuits and other auxiliary structural elements; this power consumption is usually very small — on the order of several tens of watts, less often up to 1.5 kW.

Tank lining

Enamel. Like plastic, enamel is chemically neutral and does not affect the taste and smell of water, while it is considered more durable. Theoretically, this material is prone to the appearance of microcracks, including due to temperature differences (which eventually lead to water contact with metal and corrosion). However, high-quality heat-resistant enamels are most often used in boilers, which have the same coefficient of thermal expansion as the material of the tank and are damaged only in case of violation of operating conditions (or with strong impacts). So the mentioned drawback is typical mainly for the most inexpensive models with appropriate quality materials.

Stainless steel. Due to its high strength, stainless steel is considered the most reliable and durable material today. Unlike enamelled ones, such tanks are absolutely not afraid of temperature changes, and they also normally withstand hits including pretty strong ones. On the other hand, steel is noticeably more expensive than enamel. At the same time, for such containers, the possibility of corrosion is not ruled out — especially when it comes to cheap devices that use outdated welding technologies, and the material of the seams may differ from the material of the tank. To eliminate this phenomenon, cathodic protection is required, which further affects the cost.

Glass ceramics....Material, in many respects similar to the enamel described above. On the one hand, glass ceramic does not react with water, does not affect its taste and properties, and is also considered quite reliable. On the other hand, this material is more brittle and prone to the appearance of microcracks and the loss of its properties — both as it wears out and due to strong heating. Because of this, such water heaters usually have a recommended temperature limit of 60 °C.

Plastic. Plastic is chemically resistant, not subject to corrosion and practically does not affect the composition of water, besides it is inexpensive. The main disadvantage of plastic coating is considered to be fragility.

— Copper. Copper coating is used exclusively in instant water heaters (see "Type"); more precisely, in such devices, the entire tank is usually made of copper. This material is not suitable for a storage tank: copper is too heavy, and it has a corrosive effect on some materials (aluminium, cast iron) due to its electrochemical properties, even if these materials are used outside the heater, in other parts of the water supply system. However, in a small tank in an instant water heater, these moments are invisible, while copper perfectly tolerates compression and tension during temperature changes.

— Titanium-cobalt alloy. A special alloy, characterized by the highest strength and resistance to corrosion, but also very expensive. It is extremely rare, only in top-level heaters.

Heating time

Time to heat the storage tank (see "Type"), filled with cold water, to operating temperature.

It is worth remembering that this characteristic is not 100% accurate. Manufacturers usually indicate the heating time for certain conditions: a filled tank, maximum heating intensity, and temperature rise (∆T) by a certain number of degrees. In practice, the heating time may differ, both one way and the other. For example, if the heating time for the device is 20 minutes at ∆T = 50 °C, then when the water is heated from 15 °C to 60 °C, the time will be shorter (∆T = 45 °C). Nevertheless, this indicator allows us to evaluate the overall flow rate of the boiler, and with equal ∆T and volumes, different models can be compared in terms of heating time.

Heating elements

The number of heating elements provided in the design of the water heater. In this case, it is the total number of elements that are taken into account, regardless of whether they belong to the same type or different ones: for example, 2 heat exchangers and 1 heating element are considered as 3 elements.

All gas models (see "Energy source") have only one heating element — this is quite enough for efficient operation. In combined devices (see ibid.), on the contrary, there are several heating elements by definition (at least two — a heat exchanger and an electric one). In electric and indirect water heaters, the options may be different.

The meaning of several heaters of the same type is primarily to increase the heating efficiency. For example, in an instant (see "Type") electrical water heater, in this way, it is possible to increase the working length — the distance that water passes inside the device from inlet to outlet; by increasing the working length, the water is heated longer. In storage electric models, several heaters provide more uniform heating of the water, and in indirect ones, they allow more heat to be taken away. In addition, in indirect devices, heat exchangers can differ in the source of heating: for example, one can work from a heating boiler, the second from a solar collector.

Also, note that duplication of heating elements can also be used as protection against failures: if one of them...fails, the heating efficiency decreases, but the device remains operational. However, this possibility is not available in all models with several heaters, its presence should be clarified separately.

Heating element type

Open coil. The open coil is made from a high-resistance electrical wire enclosed in a thin insulating sheath. The main advantages of such an element are the heating rate, high efficiency and precise temperature control; in addition, scale is almost not formed on the spiral. And of the shortcomings — a low service life.

Wet heating element. Wet heater is a metal tube with a heating thread laid in the centre; the space between the tube and the thread is filled with an insulating material with good thermal conductivity. Heating elements heat up more slowly than open coils, have lower efficiency and are prone to the formation of scale on them; on the other hand, their service life is much longer, and in instant heaters, heating elements are not so sensitive to air pockets.

Dry heating element. A kind of heating element with an improved design: the heater tube is enclosed in an additional shell (most often made of metal with an enamel coating on the outside) and does not come into contact with water, hence the name. Thanks to this, the likelihood of scale formation is reduced, which is especially important when working with hard water. Also, the replacement of such elements is significantly easier than conventional ones. Among their shortcomings can be called a rather high cost.

Infrared heating element. Tu...bular electric heater of a special design: in the form of a transparent glass tube, in which the incandescent spiral is enclosed. The principle of operation of such an element is somewhat different from a conventional heating element: a significant part of the heating is provided by infrared radiation, which heats not so much the water as the walls of the tank — and heat is already transferred from them to the water. Thus, the water is heated not only at the point of contact with the heating element but also at the point of contact with the walls — which means that the heating is faster and more uniform. Also, note that the IR heater itself is usually "dry"; see above for the advantages of this design. The main disadvantages of such heaters are high cost and relatively short service life.

— Heat exchanger. It is used in gas and indirect heaters (see Water heater type). It is a metal structure heated by burning gas (in gas heaters) or passing inside a heated coolant (in indirect heaters). Usually has a ribbed shape. It is done to ensure the maximum area of contact with the heated water with relatively small dimensions — the larger this area, the more heat is transferred to the water per unit of time and the more efficient the heater is.

Functions

Among the functions of the water heater there are thermostat, water flow regulator, Smart (auto mode), programmer, display and control via the Internet. More about each of them

— Thermostat. A device that allows you to control the temperature of the water at the outlet of the heater. In storage models (see "Type"), the thermostat sets the maximum temperature for heating water in the tank; in instant devices, this function is carried out by changing the intensity of heating.

— Automatic water flow regulator. It is used in instant water heaters. Since the water in such devices heats up in the process of its movement through the heater, the higher the speed of water movement (the greater the pressure), the lower the heating temperature, and if the pressure is too high, the power of the device may simply not be enough for effective heating. The use of an automatic water flow regulator avoids this — this system regulates the speed of water movement through the heater, limiting it if necessary.

— Smart (auto mode). A special “smart” mode in which the boiler is controlled (primarily the intensity of heating) automatically. Specific features of this mode may vary depending on the model. However, the following format of operation is most common: during...the first week of use, the device remembers at what time of the day the hot water was used, and then the heater’s operating mode adjusts to this data. Thus, the water heater provides the user with hot water at the right time and, at the same time, does not waste energy on heating during hours when heating is not needed.

— Programmer. The presence of a programmable thermostat — a device that allows not only to maintain the temperature but also to programme the operation of the device for a certain period. The simplest programmers work like a timer, turning on at the right time (vacation or holiday mode, when the device is not active for several days, and when the family returns to the house, it will turn on and heat the water). More advanced ones allow you to set the mode of operation for individual days. Either way, this feature provides added convenience and eliminates the need to constantly adjust the operation of the device manually. On the other hand, the presence of a programmer affects the cost.

— Display. Usually, a simple LCD screen with a few characters is used as a display. However, even such equipment significantly increases the convenience and information content of management. Various service data can be shown on the display — from the temperature of the water in the tank to messages about malfunctions and failures. This feature slightly increases the cost of the device, but compared to the total cost of the heater, this moment is usually insignificant.

— Control via the Internet. The specific nuances of such control may vary: for example, some models use a special application installed on a smartphone or tablet, while others can work through a regular browser from any computer. However, this function allows you to control the heater from almost anywhere in the world — provided that there is access to the Internet. In addition, with this control, the user can also monitor the status of the device and receive various notifications (on and off, about the temperature of the water in the tank, about various problems, etc.).

Safety systems

The safety of water heaters can be carried out by such functions as overheat protection frost protection, dry heating protection, surge protection, electrical protection (RCD), anti-legionella, gas control and draft sensor. More about them:

— Overheat protection. Water heater safety system that automatically turns off the power supply or gas supply (depending on the type) when the heating element reaches a critical temperature. It avoids overheating and the troubles associated with it, ranging from heater failure to fire.

— Frost protection. Function to prevent freezing of water in the circuits, tank and/or heat exchanger of the water heater. It will be useful when the device is installed in a room with a low temperature and works with long breaks. Frozen water expands, which can damage the device; to avoid this, the frost protection monitors the temperature of the water in the device and turns on the heating when this temperature drops to a critical level.

— Dry heating protection. A safety system that prevents the heater from being switched on without the presence of water in it. Since the heating element does not transfer heat to the water when turned on, it heats up very q...uickly and, in a short time, reaches a high temperature that can lead to damage to the heater and even to a fire. The presence of protection against switching on without water allows you to avoid such unpleasant consequences.

— Voltage surge protection. System for protecting the heater from power surges. Electronically controlled models are usually equipped with such protection (see Control) since it is the control electronics that are most sensitive to problems with the power supply. Note that the capabilities of such systems are noticeably more modest than those of specialized stabilizers or protective systems: the “hardware” of a water heater can smooth out relatively weak power surges, but in case of serious failures, it will most likely simply turn off the device to avoid damage. However, this feature will be useful; except that in very unstable electrical grids, prone to frequent fluctuations, such a heater may require an external stabilizer.

— Electrical protection (RCD). Built directly into the heater, the RCD is a residual current device. Such a device is primarily intended to protect people from electric shock — for example, if the insulation is damaged and electricity leaks into the case or water. When a person comes into contact with this electricity, a so-called leakage current occurs. The RCD reacts to it and almost instantly turns off the power to the boiler, preventing electric shock.
Note that such safety devices are standardly installed directly in switchboards. However, the presence of an RCD in the water heater provides additional security. Naturally, such equipment is found mainly in electric models.

— Safety valve. A safety system that prevents a critical increase in water pressure in the heater. Usually, this protection is based on a safety valve that opens when a certain pressure level is reached and drains excess water, avoiding damage to the heater.

— Gas control. Gas heater safety system that automatically shuts off the gas supply in the event of a burner flame failure. It avoids filling the room with gas and possible unpleasant, and even tragic consequences. Resuming the gas supply after the protection is triggered must be done manually.

— Draft sensor. A sensor that monitors the presence of draft in the flue of a gas water heater. This function is especially important for models with open combustion chambers: in the absence of a draft, combustion products will fill the room where the heater is located. And this, in turn, can lead to a deterioration in people's well-being, health problems and even deaths. To avoid such consequences, this sensor, when detecting problems with the draft, turns off the gas supply and issues a warning about the problem. However, such equipment can also be found in models with closed combustion chambers. In them, the draft sensor performs mainly a diagnostic function, allowing you to determine what interferes with the normal operation of the burner.

— Anti-legionella. A function that prevents the growth of pathogenic bacteria in the tank and water heater circuits. Some types of such bacteria can live and multiply in fairly hot water — up to 60 °C. To avoid this, the anti-legionella system monitors the temperature of the water in the tank and periodically raises it to a level of about 65 °C. The specific methods of operation of such systems can be different: for example, some work strictly according to a set schedule (for example, once every two weeks), others turn on additional heating only if for some period (for example, a month) the water has not been heated to sufficiently high temperatures.
Banzai DINOX24 often compared
Gorenje FTG SMV9 often compared