USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison BenQ TH585 vs BenQ TH671ST

Add to comparison
BenQ TH585
BenQ TH671ST
BenQ TH585BenQ TH671ST
from $787.26 
Expecting restock
Compare prices 5
TOP sellers
Main functionhomeuniversal
Lamp and image
Lamp model5J.JHH05.001
Service life4000 h4000 h
Service life (energy-saving)10000 h10000 h
Lamp power240 W
Brightness ANSI Lumens3500 lm3000 lm
Dynamic contrast10 000:110 000:1
Colour rendering1 billion colours1 billion colours
Horizontal frequency15 – 102 kHz15 – 102 kHz
Frame rate23 – 120 Hz23 – 120 Hz
Projection system
TechnologyDLPDLP
Real resolution1920x1080 px1920x1080 px
Image format support16:9, 16:10, 4:34:3
Projecting
Rear projection
Throw distance, min0.96 m
Throw distance, max10.96 m
Image size30 – 300 "30 – 300 "
Throw ratio1.5:1 – 1.65:10.69:1 – 0.83:1
Optical zoom1.1 x1.2 x
Zoom and focusmanualmanual
Lens shift
 /±20% vertical/
Keystone correction (vert), ±30 °40 °
Features
Features
MHL support
3D support
MHL support
3D support
Hardware
USB 2.011
Number of speakers11
Sound power10 W5 W
Video connectors
VGA /1 input, 1 output/
VGA /1 input, 1 output/
HDMI inputs22
HDMI versionv 1.4v 1.4
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
Service connectors
COM port (RS-232)
 
COM port (RS-232)
USB (slave)
General
Noise level (nominal)35 dB33 dB
Noise level (energy-saving / quiet)29 dB29 dB
Power sourcemainsmains
Power consumption
340 W /206 W in economy mode/
355 W /240 W in economy mode/
Size (HxWxD)110x312x225 mm120x296x224 mm
Weight2.8 kg2.7 kg
Color
Added to E-Catalogfebruary 2020march 2018

Main function

The main function of the projector.

This parameter is rather conditional, it largely depends on how the device is positioned by the manufacturer; however, for the most comfortable use, it is best to follow exactly the stated purpose. The options here can be: multipurpose, for presentations, for home theater, professional, portable, gaming. Here is a more detailed description of each option:

— Multipurpose. The simplest kind of projectors, roughly speaking – all models that do not belong to any of the specializations described below. Most of them have non-interchangeable optics, a throw distance of 1-12 m, an image diagonal of about 1-7 m (see below), and a relatively low cost.

— For presentations. Projectors designed primarily for business use, such as presentations. Usually they have a small throw distance with a rather large diagonal, which allows them to be used in small rooms; capable of working with both widescreen and conventional image formats (see below), and also support resolutions typical for computer graphics cards — for example, 1280x800. In this case, the actual resolution itself (see below) can be quite low. In addition, an almost mandatory feature of this type of projectors (with a few exceptions) is the presence of a D-Sub 15 pin input (see "Connectors").

— For home theater. Projectors designed primarily for film viewing. The main criterion for classifying a particular model in this category is how the projector is positioned by the manufacturer itself (in other words, whether this purpose is indicated in the official documentation). However, there are some common features: cinematographic models usually support widescreen image formats, have a high real resolution (see below) that allows you to work with HD video, and are also equipped with the appropriate interfaces (see "Connectors").

— Professional. High-quality projectors with advanced parameters, an abundance of functions and, accordingly, a considerable price. They are characterized by high image contrast, support high-resolution video (including cinematic image formats), have optical zoom to scale the image without losing quality, provide the connection of multi-channel sound systems, and much more. The specific set of options in professional projectors may vary depending on the model, but in any case, these are the most charged devices with top-end characteristics.

— Portable projector. An ultra-compact variety of projectors: most models are pocket-sized. Such devices are intended primarily for improvised presentations. The format of work and power supply may be different. So, some models are made as separate devices with their own built-in storages and batteries (and sometimes even with a full-fledged mobile OS like Android on board). Others are similar in design to external cases or consoles and are put directly on the mobile phone during operation, using it as a source of signal and power. However, anyway, portable projectors, due to their small size, have rather low technical specifications — they have neither brightness nor high image contrast.. Battery life (in models with their own batteries) usually ranges from 40 minutes to one and a half hours. Also, this variety is characterized by cost-effective LED lamps (see below).

— Gaming. Specialized projectors designed for use in video games. Outwardly, they are often distinguished by a characteristic “aggressive” design, while the design can be done in the style of a certain line of gaming PCs or laptops. As for the specifications, they, in accordance with the name, are aimed primarily at providing a high-quality game "picture". To do this, projectors for this purpose provide, in particular, high real resolution (not lower than 1920x720, and more often 1920x1080 or more), colour reproduction at the level of 1 billion colours, support for frame rate (see below) up to 120 Hz, and also at least one HDMI input for receiving a digital signal from a computer graphics card. In addition, such models often provide support for 3D. The maximum image diagonal can reach 7.5 m or more; at the same time, ultra-wide-angle devices are also found in this category, capable of providing an image diagonal of about 3 m from a distance of about half a metre.

Lamp model

The lamp model that the projector is designed for. Most projectors come with lamps included, so this information is not needed for normal use. But when looking for a spare lamp or replacement, information about model can be very useful: finding a spare part by the exact name is much easier than by general data like the brand of the projector.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.

Throw distance, max

The farthest distance from the screen that the projector can be used on. This is the maximum distance at which the image remains in focus and maintains acceptable brightness — at least enough for viewing in a darkened room on a high-quality screen.

It is necessary to choose according to this parameter taking into account the expected operating conditions and the distances to be dealt with. At the same time, it's ok to have a certain margin for the maximum distance — since, as already mentioned, it is usually indicated for an perfect screen and a darkened room, and such conditions are not always available. Also note that although the throw distances depend on the lens, not every projector with an interchangeable lens allows the installation of more "long-range" optics than the standard one — the device may simply not have enough brightness for an increased distance.

Throw ratio

The projector's throw distance is vital in determining what size projection screen to use and how far away it should be from the projector. Most projectors have a variable throw ratio. In the extreme positions, these are wide-angle mode (smallest value) and telephoto lens mode (largest value). Knowing these values, you will be able to determine the range of throw distances within which the projector must be placed in order for the projected image to match the specified dimensions of the projection screen.

According to these values, you need to check or set the optical zoom. We divide the larger value by the smaller value, and we get a figure, for example 1.33-2.16: 1.

If we want to calculate whether this projector is suitable for a certain image size, we do this: 1.33*3 (image width)=the distance at which the projector should hang.

Optical zoom

The magnification range of optical zoom that the projector can provide.

Optical magnification of the image is carried out due to the operation of the lenses in the projector lens. With such an magnification, the size of the entire image changes; this can be useful both for adjusting the “picture” to the screen size, and for detailed viewing of individual details (the main thing is that these details do not crawl out of the screen when enlarged). In general, optical zoom is considered more advanced than digital one, because it allows user to adjust the diagonal without moving the projector, and maintains the original resolution of the "picture" regardless of the magnification. However lenses with such an possibility ("zoom lenses") are more complicated and more expensive than fixed optics, but the difference in price is almost imperceptible compared to the cost of the projectors themselves.
BenQ TH585 often compared
BenQ TH671ST often compared