USA
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Wolf Cinema REF-2000 vs Wolf Cinema REF-1000

Add to comparison
Wolf Cinema REF-2000
Wolf Cinema REF-1000
Wolf Cinema REF-2000Wolf Cinema REF-1000
Outdated ProductOutdated Product
TOP sellers
Main functionhomehome
No lens
Lamp and image
Lamp typeXenon
Number of lamps2
Service life
2000 h /3000 h in economy mode/
Lamp power330 W700 W
Brightness5000 lm6500 lm
Static contrast650:1
Dynamic contrast10 000:1
Horizontal frequency15 – 120 kHz15 – 120 kHz
Frame rate24 – 150 Hz24 – 150 Hz
Projection system
Technology
LCoS /3x1.27"/
DLP /3x0.95"/
Real resolution
1920x1080 px /Full HD/
1920x1080 px /Full HD/
Image format support4:3, 16:9, 16:104:3, 16:9, 16:10
Projecting
Rear projection
Zoom and focusmotorizedmotorized
Lens shift
 /±120% vertical, 54% horizontal/
 /±120% vertical, 54% horizontal/
Features
Features
3D support
3D support
Hardware
Video connectors
 
S-Video /2pcs/
composite /2/
component /2pcs/
VGA /2/
 
composite
component
Service connectors
COM port (RS-232)
 
COM port (RS-232)
USB (slave)
General
Noise level (nominal)39 dB
Power sourcemainsmains
Power consumption1230 W1600 W
Size (HxWxD)362x663x793 mm306x546x714 mm
Weight
49.9 kg /without lens/
41.3 kg /without lens/
Added to E-Catalogseptember 2017september 2017

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Number of lamps

The number of lamps provided in the design of the projector.

Most modern projectors have one lamp, but there are also multi-lamp models. More lamps increase the light flow and, accordingly, the brightness of the image provided by the projector. In addition, in models with 4 lamps, it may be possible to continue working even if one of the lamps burns out — the brightness of the remaining ones is enough to provide the desired brightness. In two-lamp versions, most often you have to change a burned-out lamp.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Static contrast

The static contrast of the image provided by the projector.

Static contrast refers to the maximum difference between the brightest white light and the darkest black that a projector can provide within a single frame. Unlike dynamic contrast (see below), this parameter describes not conditional, but quite real capabilities of the device, achievable without the use of any additional tricks like auto-brightness. And since the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Technology

The technology by which the projector sensor is built.

DLP. This technology is based on a chip with thousands of rotary micromirrors. Each such mirror corresponds to one pixel and has two fixed positions — “lit” and “darkened”. In most DLP projectors, there is only one sensor, and the output of a colour image is provided by the colour wheel, thanks to which the projector alternately displays the red, green and blue image; they are replaced so quickly that the viewer perceives not individual frames, but a whole colour picture. Compared to LCD models (see related section), these single-sensor projectors are more compact and offer better image contrast with deep black levels (which improves black and white image quality). However, the brightness of the colour image in DLP devices is relatively low, in addition, they are subject to the "rainbow effect": in dynamic scenes, colour artifacts may be noticeable due to the mismatch of red, green and blue image components. Three-sensor DLP projectors don`t have these shortcomings; however, such a design is very expensive, so it is found rarely, mainly among premium devices.

3LCD. Technology based on the use of translucent LCD sensors. There are three such sensors, each of them is translucent with its base colour (red, green or blue), and the final colour “picture” is formed from three images simultaneously superimposed on each other. Thanks to...this format of operation, you can achieve brighter, more saturated colours than in single-sensor DLP projectors (see the relevant paragraph); in addition, this technology is completely devoid of the "rainbow effect". Among its shortcomings are the relatively low contrast ratio (in particular, due to the low black depth) and the larger size of the projectors.

LCD(Liquid Crystal Display) — a colour rendering technology based on the modulation of light by liquid crystals. Do not confuse LCD and 3LCD sensors. 3LCD technology forms an image from three separate light streams, and in an LCD sensor, the image follows immediately from a single light beam. Sensors of this type provide a stable, contrasting and colour-rich image. Among the shortcomings of the technology, one can note the glimpse of the light grating, if you look at the picture from a close distance. Additionally, the substrate of LCD sensors is prone to fading, due to which the blue colour may begin to turn yellow over time (note that this can happen after a long time of active operation). LCD sensors require periodic maintenance, the service comes down to cleaning the air filter. LCD-sensor projectors are usually compact in size and light in weight, such models are prone to heat, and the noise threshold is above average.

— LCoS. A technology that combines the properties of DLP and LCD. Like LCD, it provides three separate sensors for the three primary colours (red, green, blue), and the final colour image is formed by the simultaneous superposition of these three components. The difference lies in the fact that in LCoS projectors the sensors are not translucent, but reflective. Thanks to this, you can achieve excellent contrast (as in DLP) combined with bright, high-quality colours without the "rainbow effect" (as in LCD). The main drawback of this technology is the impressive cost, which is why it is used mainly in premium projectors.

Video connectors

Inputs for connecting external video sources provided in the projector.

— VGA. Analogue video interface, that considered obsolete, but still quite popular; VGA outputs are found in video technology, as well as in some computer graphics cards. It supports resolutions up to 1280x1024, which allows you to work with 720p video, but more advanced HD standards are out of the question. Audio signal transmission via VGA is not provided, the soundtrack for such a video will have to be connected separately.

DVI. A video interface primarily used to connect projectors to computers. Initially, it did not provide sound transmission, but this possibility is gradually being introduced. Nowadays, several varieties of DVI are used. So, according to the signal format, purely digital DVI-D and combined DVI-I, which supports digital and analogue video, are distinguished. In both of these varieties, a two-channel digital data transmission format can be used, in which the maximum video resolution reaches 2560x1600 (in single-channel it is 1920x1200). Connectors and plugs DVI-D and DVI-I are compatible with each other if the number of channels matches, or if a single-channel video signal is connected to a two-channel input.

DisplayPort. A digital interface originally designed for connecting LCD monitors. Modern versions are similar in capabilities to HDMI, they support HD resolutions of 1080p an...d higher, as well as multi-channel audio transmission. However, such outputs are rare in video devices; the main area of application for DisplayPort has been and remains computer technology. In particular, it is this connector (as well as its reduced version miniDisplayPort) that Apple regularly uses in its computers.
  • — DisplayPort v 1.2. DisplayPort v 1.2 has a bandwidth of 17.28 Gbps. This signal transmission standard has full support for FullHD video format. QuadHD and 4K formats are partially supported.
  • Display Port v 1.3. The maximum bandwidth of DisplayPort v 1.3 is 25.92 Gbps. This version of DisplayPort provides full support for FullHD and QuadHD formats. 4K and 8K video modes are partially supported.
  • Display Port v 1.4. The bandwidth limit of DisplayPort v 1.4 is 32.4 Gbps. This version of DisplayPort features enhanced support for 4K video, including 144Hz refresh rates, while DisplayPort 1.3 only limits 4K to 120Hz. Like the previous version, DisplayPort 1.4 partially supports 8K video modes.


— BNC. Bayonet type connector used to connect coaxial cable. Projectors use this connection to transmit analogue component video (see the relevant paragraph) or uncompressed SDI video. BNC refers to professional interfaces and is found in projectors of the corresponding class.

— S-Video. Analogue interface for video transmission (without work with audio). Provides two channels for transmitting image information, similar to the component input described below. However, on the one hand, S-Video uses only one connector instead of three, on the other hand, the bandwidth of this interface is noticeably lower, it is not suitable for HD resolutions, in light of which it is considered obsolete and is rare, mainly found in specialized video equipment.

— Composite. Initially, a composite interface is called an analogue interface for transmitting video and sound, using 3 separate channels (for the video signal and the left and right audio channels). However, in this case, most often only one connector is meant — for video; audio inputs on projectors are listed separately and are referred to as RCA (audio) (see "Audio connectors"). In general, the composite interface does not have a high picture quality, besides it is not suitable for transmitting an HD image and is considered obsolete. On the other hand, it is very common and is found not only in modern video equipment, but also in outdated ones; for example, you can connect a VHS-VCR to the projector through this interface.

— Component. An interface that is considered the most advanced among modern analogue video standards. The video signal with this connection is divided into three components transmitted over separate cables; this provides good interference resistance and sufficient bandwidth even for HD resolutions. But the sound in this interface is not supported.
Wolf Cinema REF-2000 often compared