Dark mode
USA
Catalog   /   Photo   /   Digital Cameras

Comparison Sony A6400 kit 16-50 vs Sony A6500 kit 16-50

Add to comparison
Sony A6400  kit 16-50
Sony A6500  kit 16-50
Sony A6400 kit 16-50Sony A6500 kit 16-50
Compare prices 40
from $1,708.10 
Outdated Product
User reviews
0
0
0
6
TOP sellers
Main
Wide dynamic range. 4K video recording. S-Log and HLG support. High rate of fire in burst mode. Tracking autofocus on faces and eyes. Touch screen. Maximum bitrate up to 100 Mbps when shooting 4K.
There is no headphone output. No matrix stabilization. The touch screen only works in spot focus mode.
5-axis matrix stabilization. Advanced autofocus system. Great performance at high ISOs. Tilt touch display. Compact dimensions. Shooting 4K with a maximum bitrate of 100 Mbps.
Reduced touch screen functionality. There is no headphone output.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
DxOMark rating8385
Sensor
SensorCMOS (CMOS)CMOS (CMOS)
Sensor sizeAPS-C (23x15.5 mm)APS-C (23x15.5 mm)
Total MP2525
Effective MP number2424
Maximum image size6000x4000 px6000x4000 px
Light sensitivity (ISO)100-25600100-25600
RAW format recording
Lens
Mount (bayonet)Sony ESony E
Kit lens?
Aperturef/3.5 - f/5.6f/3.5 - f/5.6
Focal length16 - 50 mm16 - 50 mm
Optical zoom3.13.1
Manual focus
Image stabilizationis absentwith matrix shift
Photo shooting
HDR
White balance measuring
Exposure compensation± 5 EV, in 1/2 or 1/3 EV steps± 5 EV, in 1/2 or 1/3 EV steps
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 120 fps1920x1080 px 120 fps
Ultra HD (4K)3840x2160 px 30 fps3840x2160 px 30 fps
File recording formatsMP4, AVCHD, XAVC SMP4, AVCHD, XAVC S
Manual video focus
Connection ports
micro HDMI v 1.4
microphone Jack
HDMI
microphone Jack
Focus
Autofocus modes
one shot
tracking
in face
by smile
one shot
tracking
in face
by smile
Focus points425 шт425 шт
Touch focus
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.7 x0.7 x
Frame coverage100 %100 %
Shutter speed30 - 1/4000 с30 - 1/4000 с
Continuous shooting11 fps11 fps
Shutter typeelectronic/mechanicalelectronic/mechanical
Screen
Screen size3 ''3 ''
Screen resolution921 thousand pixels921 thousand pixels
Touch screen
Rotary display
Memory and communications
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC
Communications
Wi-Fi
Bluetooth
NFC
smartphone control
Wi-Fi
 
NFC
smartphone control
Flash
Built-in flash
Application range6 m6 m
External flash connect
Power source
Power source
battery
battery
Battery modelNP-FW50NP-FW50
Battery capacity1080 mAh1080 mAh
Shots per charge410 шт350 шт
General
Charger modelBC-QM1BC-QM1
Console/synchronizer modelRM-VPR1, RMT-DSLR2RM-VPR1, RMT-DSLR2
Materialaluminium / plasticaluminium / plastic
Dimensions (WxHxD)120х67х60 mm120х67х53 mm
Weight403 g981 g
Color
Added to E-Catalogjanuary 2019january 2018

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Kit lens

A lens supplied with the camera in a serial (kit) configuration. With it, the camera is ready to work literally “out of the box” - everything needed for shooting is already available, and there is no need to buy a lens separately (as is the case with the “naked body” of the body camera). The vast majority of these are optics with a universal set of medium focal lengths and a relatively low variable aperture ratio. Often, kit lenses have rather modest characteristics, and they are intended mainly for novice users, learning the basics of photography and simple everyday shooting. But there are also other options for whale lenses - top camera models can be equipped with fairly advanced optics. It wouldn’t hurt to clarify this point separately. We also note that the same camera can be supplied with different options for complete optics.

Image stabilization

An image stabilization method provided by a camera. Note that optical and sensor-shift systems are sometimes combined under the term "true" stabilization, due to their effectiveness. See below for more details.

Stabilization itself (regardless of the operating principle) allows you to compensate for the "shake" effect when the camera is not positioned correctly - especially when shooting handheld. This is especially important when shooting with significant magnification or at long shutter speeds. However, in any case, this function reduces the risk of ruining the frame, so cameras with stabilization are extremely common. The operating principles can be as follows:

— Electronic. Stabilization is carried out by means of a kind of “reserve” — a section along the edges of the sensor, which is not initially involved in the formation of the final image. However, if the camera electronics detect vibrations, it compensates for them by selecting the necessary fragments of the image from the reserve. Electronic systems are extremely simple, compact, reliable and at the same time inexpensive. However, for their operation, it is necessary to allocate a fairly significant part of the sensor — and reducing the useful area of the sensor increases the noise level and degrades the image quality. And in some models, electronic stabilization is enabled only at lower resolutions and is not available at full...frame size. Therefore, in its pure form, this option is found mainly in relatively inexpensive cameras with non-replaceable optics.

— Optical. Stabilization is achieved when light passes through the lens — due to a system of moving lenses and gyroscopes. As a result, the image gets to the sensor already stabilized, and the entire area of the sensor can be used for it. Therefore, optical systems, despite their complexity and rather high cost, are considered more preferable for high-quality shooting than electronic ones. Separately, we note that in SLR and MILC cameras (see "Camera type") the presence of this function depends on the installed lens; therefore, for such models, optical stabilization is not indicated in our catalog in principle (even if the kit lens is equipped with a stabilizer).

— With sensor shift. Stabilization performed by shifting the sensor "following" the shifted image. Like the optical one described above, it is considered a fairly advanced option, although in general it is somewhat less effective. On the other hand, sensor shift systems have serious advantages — first of all, such stabilization will work regardless of the characteristics of the lens. For cameras with non-replaceable optics, this means that the lens can do without an optical stabilizer and make the optics simpler, cheaper and more reliable. In SLR and MILC cameras, sensor shift allows even "non-stabilized" lenses to be used with convenience, and when "stabilized" optics are installed, both systems work together, and their efficiency is very high. In addition, sensor shift is somewhat simpler and cheaper than traditional optical stabilizers.

— Optical and electronic. Stabilization that combines both of the above options: initially, it operates on an optical principle, and when the lens's capabilities are not enough, an electronic system is connected. This allows for an increase in overall efficiency in comparison with purely optical or purely electronic stabilizers. On the other hand, the disadvantages of both options in such systems are also combined: the optics are comparatively complex and expensive, and not the entire sensor is used. Therefore, such a combination is rare, mainly in individual advanced digital compacts.

— With sensor shift and electronic. Another type of combined stabilization systems. Like "optical + electronic", it improves the overall efficiency of stabilization, but at the same time combines the disadvantages of both methods (they are also similar: more complicated and more expensive camera plus a decrease in the useful area of the sensor). Therefore, this option is used extremely rarely - in single models of digital ultrazooms and advanced compacts.

Connection ports

— USB C. A universal USB interface that uses a Type C connector. USB ports themselves (all types) are used mainly for connecting the camera to a computer for copying footage, managing settings, updating firmware, etc. Specifically The Type C connector is comparable in size to earlier miniUSB and microUSB, but has a reversible design that allows the plug to be inserted in either direction. In addition, USB C often operates according to the USB 3.1 standard, which allows for connection speeds of up to 10 Gbps - a useful feature when copying large amounts of content.

- HDMI. A comprehensive digital interface that allows you to transmit video (including high resolution) and audio (up to multi-channel) over a single cable. The presence of such a port makes it possible to use the camera as a player: it can be directly connected to a TV, monitor, projector, etc. and view your footage on the big screen. In this case, broadcast capabilities can include not only video playback, but also demonstration of captured photos in slide show mode. HDMI inputs are present in most modern video equipment, and connection is usually not a problem.
Nowadays, there are several versions of the HDMI interface on the market:
  • v 1.4. The oldest version currently relevant, released in 2009. However, it supports 3D video, is capable of working with resolutions up to 4096x2160 at a speed of 24 fps, and in Full HD resolution the frame rate can reach 120...fps. In addition to the original v.1.4, there are also improved modifications - v.1.4a and v.1.4b; they are similar in basic capabilities, in both cases the improvements affected mainly work with 3D content.
  • v2.0. Significant HDMI update introduced in 2013. In this version, the maximum frame rate in 4K has increased to 60 fps, and support for ultra-wide 21:9 format can also be mentioned. In update v.2.0a, HDR support was added to the interface capabilities; in v.2.0b this function was improved and expanded.
  • v 2.1. Despite the similarity in name to v.2.0, this version, released in 2017, was a very large-scale update. In particular, it added support for 8K and even 10 K at speeds up to 120 fps, and also further expanded the capabilities for working with HDR. This version was released with its own cable - HDMI Ultra High Speed; all features of v.2.1 are available only when using cables of this standard, although basic functions can be used with simpler cords.


— Headphone output. Audio output allows you to connect headphones to the camera. As a rule, it is represented by a classic 3.5 mm mini-jack. The presence of such a connector provides the ability to monitor sound during video recording in real time. This is especially important when filming interviews, vlogs and other similar projects.

— Microphone input. Specialized input for connecting an external microphone to the camera. External microphones are significantly superior to built-in microphones in sound quality. Firstly, they are not so sensitive to the camera’s “own” sounds - from buttons, control wheels, focus motors, etc. (and if the microphone uses a long wire and is not attached to the body, these sounds will not be heard at all). Secondly, external microphones themselves have more advanced characteristics. On the other hand, their use is justified mainly for professional video recording; therefore, the presence of a microphone input, as a rule, corresponds to advanced video recording capabilities

Communications

- GPS module. The camera has a built-in GPS satellite navigation module. In digital cameras, the GPS module is used primarily for setting the so-called. geo-tagging to photos: information about specific geographical coordinates of the shooting location is recorded in the service information about each image. However, the matter is not limited to this, and models with this function can have many additional features - from classic navigation to special programs like a database of points of interest with hints based on the current location.

- WiFi. A wireless standard originally developed for computer networking, but more recently allowing for direct connection between devices. The ways in which Wi-Fi is used in cameras can vary. Thus, the most popular option is to connect to a smartphone, tablet or other similar device for remote control (see below) and / or transfer footage to an external device. Some cameras have built-in software that allows you to directly connect to the Internet through wireless access points and upload photos and videos to popular network services. And in models running Android (see above), specific features depend only on the installed software and may include full access to social networks through client programs (see below) and even web surfing through a browser.

— Bluetooth. A wireless interface used to communicate with various electronic devices. In cameras, Blu...etooth is most often used to connect to a computer or laptop and transfer footage; In addition, it allows you to use the direct printing function on printers equipped with Bluetooth. The range of Bluetooth communication is up to 10 m, and the devices do not necessarily have to be in direct line of sight to each other.

- NFC chip. NFC (Near-Field Communication) is a wireless communication technology designed to connect various portable devices with each other at a distance of up to several centimeters. In cameras it plays an auxiliary role, designed to facilitate connection with other devices (smartphones, tablets, etc.) using a longer-range standard (Wi-Fi or Bluetooth). Instead of delving into the settings - looking for devices, connecting them manually - just bring the NFC camera to a gadget equipped with the same chip and confirm the connection request.

— Control from a smartphone. The ability to remotely control the camera using a smartphone, tablet or other similar gadget. The connection between the camera and the control device is usually carried out via Wi-Fi (see above), while a special application is used for control, and the gadget’s screen plays the role of a viewfinder. The specific capabilities of such control can be different - releasing the shutter on command, selecting exposure parameters and other shooting settings, focusing by touch, etc. Often, it is also possible to “drain” the footage onto the control device and, through it, to the Internet. Note that for cameras used with mobile phones (see “Camera Type”), this function is not indicated: such a camera is usually mounted directly on the device, and there is no talk of remote control.

External flash connect

Ability to connect to the camera external flash. External flashes are usually more powerful and have more advanced features than built-in flashes, so both cameras without a built-in flash and those equipped with one (see Built-in flash) can have an external flash connection function. A standard hot shoe connector is usually used for connection. Most often , an external flash connection is provided in SLR and MILC cameras (see Camera type); in ordinary digital cameras, this function is quite rare, mainly in the most advanced models (“pseudo-reflex cameras”).

Shots per charge

The maximum number of photos that the camera can take on a single battery without recharging/replacing it. In fact, this number usually turns out to be less (sometimes quite noticeable) due to the fact that part of the charge is “eaten up” by the lens mechanics, using the display, changing settings through the menu, etc. Nevertheless, this parameter is a good indicator of the battery life of the device, and different models can be compared with each other.
Sony A6400 often compared
Sony A6500 often compared