USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Pressure Tank Units

Comparison Volks WZ370 vs Optima QB-60 Mini

Add to comparison
Volks WZ370
Optima QB-60 Mini
Volks WZ370Optima QB-60 Mini
from $44.72 up to $46.61
Outdated Product
from $47.32
Outdated Product
TOP sellers
Suitable forclean waterclean water
Specs
Maximum performance
2000 L/h /maximum/
1800 L/h /maximum/
Maximum head
35 m /maximum/
35 m /maximum/
Max. pressure8 bar
Pump typecentrifugalcentrifugal
Suction typeself-priming
Suction height6 m7 m
Maximum particle size3 mm
Maximum liquid temperature40 °С50 °С
Dry run protection
Volume of water pressure tank2 L2 L
Suction systemsingle-stagesingle-stage
Outlet size1"1"
Inlet hole size1"1"
Engine
Maximum power370 W370 W
Power sourceelectricelectric
Mains voltage230 V230 V
Engine typeasynchronous
Power cord length1.5 m
General specs
Protection class (IP)44
Country of originGermanyPoland
Pump housing materialcast ironcast iron
Impeller / auger materialplasticbronze
Water pressure tank materialsteelsteel
Added to E-Catalogseptember 2016december 2014

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Max. pressure

The highest pressure that the pump is capable of creating during operation. This parameter is directly related to the maximum head (see above); however, it is less obvious, and therefore, it is indicated rarely.

Suction type

The main division in this parameter is related to whether the pump can remove air from the suction line. This, in turn, determines the features of starting the unit.

— Self-priming. Self-priming pumps include all pumps that do not require the complete absence of air in the suction line at startup — it is enough that the pump itself is filled with water. Accordingly, such models are less demanding and normally tolerate air entering the line. However, this requires a reliable design that can normally withstand water hammer, which accordingly affects the cost of the unit.

— Priming. Pumps with this device can only work normally when both the unit body and the suction line are filled with water. If air enters the line, it must be removed or the pump will not be able to start normally. Such models are not as convenient as self-priming ones; at the same time, they are noticeably cheaper, and with the normal quality of the water supply system, there is practically no significant difference between the two varieties.

Suction height

The largest difference between the height of the pump and the height of the water level at which the pump can provide normal suction. Without special devices, the maximum value of this parameter is 7-8 m — this is due to the physics of the process. However, when using an ejector (see below), the suction height can be increased several times.

Maximum particle size

The largest particle size that the pump can handle without problems. This size is the main indicator that determines the purpose of the device (see above); and in general, the larger it is, the more reliable the device, the lower the risk of damage if a foreign object enters the suction line. If the risk of the appearance of too large mechanical impurities is still high, additional protection can be provided with filters or grids at the inlet. However, such a measure should be considered only as a last resort, because from constant exposure to solid particles, the grids become clogged and deformed, which can lead to both clogging of the line and filter breakthrough.

Maximum liquid temperature

The highest temperature of water at which the pump is capable of operating normally. Usually, in most models this parameter is 35-40 °C — at high temperatures it is difficult to ensure effective cooling of the engine and moving parts, and in fact, such conditions are rare.

Engine type

Type of motor installed in the electric pump (see "Power source").

— Asynchronous. The most common type of electric motor nowadays. Asynchronous motors are simple in design and inexpensive, while they are very reliable. Their main disadvantage is the difficulty in regulating the rotational speed and the dependence of this frequency on the load on the rotor; on the other hand, in most cases, these shortcomings are not critical.

— Synchronous. Without going into technical details, we can say that this type of electric motor is considered more advanced than asynchronous — in particular, due to the ability to adjust the speed easily. At the same time, such units are difficult to manufacture and expensive, so they are rare — mainly in high-end technology, where adjustment accuracy is a key parameter.

Power cord length

The length of the cable that supplies electricity to the pump with the appropriate type of power supply (see above). The longer the cable the farther from the socket or other power source you can install the pump. This parameter is especially important for submersible models: if the cable is too short, it will simply be impossible to lower the pump to the maximum depth provided for by its design, because ordinary extension cords cannot be immersed in water.

Protection class (IP)

An indicator that determines the degree of protection of dangerous (moving and current-carrying) parts of the hardware of the pump from adverse effects, namely solid objects and water. Since pumps, by definition, are used for pumping liquids, and many of them can normally pass quite large particles, in this case, we are talking about protection against moisture and foreign objects from outside.

The level of protection is usually indicated by a marking of the letters IP and two numbers, the first of which indicates protection against the effects of solid objects, and the second — against the ingress of water.

For the first digit, each value corresponds to the following protection values: 1 — protection against objects with a diameter of more than 50 mm (large body surfaces) 2 — against objects with a diameter of more than 12.5 mm (fingers, etc.) 3 — against objects more than 2.5 mm (most tools) 4 — against objects larger than 1 mm (virtually all tools, most wires) 5 — dust-proof (total protection against contact; dust can enter, but does not affect the operation of the device) 6 — dust-proof (case with full dust protection and contact).

For the second digit: 1 — protection against vertically falling drops of water 2 — against drops of water with a deviation of up to 15° from the vertical axis of the device 3 — against drops of water with a deviation of up to 60° from the vertical axis of the device (rain) 4 — against splashes from any direct...ion 5 — from jets from any direction 6 — from sea waves or strong water jets 7 — short-term immersion to a depth of up to 1 m (without the possibility of continuous operation in immersed mode) 8 — long-term immersion to a depth of more than 1 m (with the possibility of permanent operation) in immersed mode).

Note that in some cases one of the numbers can be replaced by the letter X — this means that official certification for the corresponding parameter has not been carried out. In pumps, X is usually put in place of the first digit, because. a high degree of moisture resistance (and for submersible models, for example, it must, by definition, correspond to 8) means a high degree of protection against solid contaminants.
Optima QB-60 Mini often compared