Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Pressure Tank Units

Comparison Optima Jet 100-24 vs Pedrollo JSWm 15MX/24 CL

Add to comparison
Optima Jet 100-24
Pedrollo JSWm 15MX/24 CL
Optima Jet 100-24Pedrollo JSWm 15MX/24 CL
from $61.68 up to $116.40
Outdated Product
from $162.48 up to $244.32
Outdated Product
User reviews
0
0
0
2
TOP sellers
Suitable forclean waterclean water
Specs
Maximum performance4200 L/h4800 L/h
Maximum head44 m52 m
Max. pressure8 bar2.8 bar
Pump typecentrifugalcentrifugal
Suction typeself-priming
Suction height9 m9 m
Maximum particle size3 mm
Maximum liquid temperature90 °С40 °С
Ejector
Dry run protection
Volume of water pressure tank24 L24 L
Suction systemsingle-stagesingle-stage
Outlet size1"1"
Inlet hole size1"1"
Engine
Maximum power1100 W1100 W
Power sourceelectricelectric
Mains voltage230 V230 V
Power cord length1.5 m
General specs
Protection class (IP)4444
Country of originPolandItaly
Pump housing materialcast ironcast iron
Impeller / auger materialbrassplastic
Water pressure tank materialsteelsteel
Added to E-Catalogdecember 2014november 2014

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Maximum head

The maximum head generated by the pump. This parameter is most often indicated in meters, by the height of the water column that the unit can create — in other words, by the height to which it can supply water. You can estimate the pressure created by the pump using a simple formula: every 10 m of head corresponds to a pressure of 1 bar.

It is worth choosing a pump according to this parameter, taking into account the height to which it should supply water, as well as adjusting for losses and the need for pressure in the water supply. To do this, it is necessary to determine the difference in height between the water level and the highest point of water intake, add another 10 to 30 m to this figure (depending on the pressure that needs to be obtained in the water supply), and multiply the result by 1.1 — this will be the minimum pressure required.

Max. pressure

The highest pressure that the pump is capable of creating during operation. This parameter is directly related to the maximum head (see above); however, it is less obvious, and therefore, it is indicated rarely.

Suction type

The main division in this parameter is related to whether the pump can remove air from the suction line. This, in turn, determines the features of starting the unit.

— Self-priming. Self-priming pumps include all pumps that do not require the complete absence of air in the suction line at startup — it is enough that the pump itself is filled with water. Accordingly, such models are less demanding and normally tolerate air entering the line. However, this requires a reliable design that can normally withstand water hammer, which accordingly affects the cost of the unit.

— Priming. Pumps with this device can only work normally when both the unit body and the suction line are filled with water. If air enters the line, it must be removed or the pump will not be able to start normally. Such models are not as convenient as self-priming ones; at the same time, they are noticeably cheaper, and with the normal quality of the water supply system, there is practically no significant difference between the two varieties.

Maximum particle size

The largest particle size that the pump can handle without problems. This size is the main indicator that determines the purpose of the device (see above); and in general, the larger it is, the more reliable the device, the lower the risk of damage if a foreign object enters the suction line. If the risk of the appearance of too large mechanical impurities is still high, additional protection can be provided with filters or grids at the inlet. However, such a measure should be considered only as a last resort, because from constant exposure to solid particles, the grids become clogged and deformed, which can lead to both clogging of the line and filter breakthrough.

Maximum liquid temperature

The highest temperature of water at which the pump is capable of operating normally. Usually, in most models this parameter is 35-40 °C — at high temperatures it is difficult to ensure effective cooling of the engine and moving parts, and in fact, such conditions are rare.

Ejector

The presence of an ejector in the design or delivery set of the pump.

The main purpose of the ejector is to increase the effective suction height. Its action is based on the fact that part of the water pumped by the pump is sent back down to the intake point; this water in some way "pushes" the water in the main suction line. Thanks to this, the suction height can be increased from 7-8 m, available without an ejector, to 15-20 m. The main disadvantage of this device is a rather high noise level.

Power cord length

The length of the cable that supplies electricity to the pump with the appropriate type of power supply (see above). The longer the cable the farther from the socket or other power source you can install the pump. This parameter is especially important for submersible models: if the cable is too short, it will simply be impossible to lower the pump to the maximum depth provided for by its design, because ordinary extension cords cannot be immersed in water.

Country of origin

Country of origin of the brand under which the pump is marketed.

There are many stereotypes related to how the origin of goods from a particular country affects their quality. However, these stereotypes are unfounded. Firstly, this paragraph does not indicate the actual place of production of the unit, but the "homeland" of the trademark (or the location of the manufacturer's headquarters); production facilities may be located in another country. Secondly, the actual quality of the product depends not so much on geography, but on the organization of processes within a particular company. So when choosing, it is best to focus not so much on the "nationality" of the pump, but on the overall reputation of a particular brand. And paying attention to the country of origin makes sense if you fundamentally want (or do not want) to support a manufacturer from a certain state.
Optima Jet 100-24 often compared
Pedrollo JSWm 15MX/24 CL often compared