USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus ROG STRIX Z390-E GAMING vs Asus ROG STRIX Z390-H GAMING

Add to comparison
Asus ROG STRIX Z390-E GAMING
Asus ROG STRIX Z390-H GAMING
Asus ROG STRIX Z390-E GAMINGAsus ROG STRIX Z390-H GAMING
Compare prices 7Compare prices 1
TOP sellers
Main
The 10-phase power system uses solid capacitors, ferrite chokes and chips with a workload of 45 A. Supports USB 3.1 Gen 2 and USB 3.1 Gen 1 Type-C interfaces. Wireless interface Intel Wireless-AC 9560.
10-phase power scheme for computing cores and additional nodes. Gigabit LAN controller Intel WGI219V with the ability to prioritize traffic. Switch "MemOK! II".
Featuresgaming for overclockinggaming for overclocking
SocketIntel LGA 1151 v2Intel LGA 1151 v2
Form factorATXATX
Power phases1010
VRM heatsink
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetIntel Z390Intel Z390
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency4266 MHz4266 MHz
Max. memory128 GB128 GB
XMP
Drive interface
SATA 3 (6Gbps)66
M.2 connector22
M.21xSATA/PCI-E 4x, 1xPCI-E 4x1xSATA/PCI-E 4x, 1xPCI-E 4x
M.2 SSD cooling
Integrated RAID controller
 /Raid 0, 1, 5, 10/
 /Raid 0, 1, 5, 10/
Expansion slots
1x PCI-E slots33
PCI-E 16x slots33
PCI Modes16x/0x/4x, 8x/8x/4x16x/0x/2x, 8x/8x/2x
PCI Express3.03.0
CrossFire (AMD)
SLI (NVIDIA)
Steel PCI-E connectors
Internal connections
TPM connector
USB 2.022
USB 3.2 gen112
USB 3.2 gen21
Video outputs
HDMI output
DisplayPort
Integrated audio
Audiochip
SupremeFX /CODEC S1220A/
SupremeFX /CODEC S1220A/
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
Wi-FiWi-Fi 5 (802.11aс)
BluetoothBluetooth v 5.0
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerIntel I219VIntel I219V
External connections
USB 2.02
USB 3.2 gen122
USB 3.2 gen234
USB C 3.2 gen21
PS/211
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors54
Added to E-Catalogoctober 2018october 2018

M.2 SSD cooling

Motherboard-integrated cooling for M.2 SSD drives.

This connector allows you to achieve high speed, however, for the same reason, many M.2 SSDs have high heat dissipation, and additional cooling may be required to avoid overheating. Most often, the simplest radiator in the form of a metal plate is responsible for such cooling — in the case of an SSD, this is quite enough.

PCI Modes

Operating modes of PCI-E 16x slots supported by the motherboard.

For more information about this interface, see above, and information about the modes is indicated if there are several PCI-E 16x slots on the board. This data specifies at what speed these slots can operate when expansion cards are connected to them at the same time, how many lines each of them can use. The fact is that the total number of PCI-Express lanes on any motherboard is limited, and they are usually not enough for the simultaneous operation of all 16-channel slots at full capacity. Accordingly, when working simultaneously, the speed inevitably has to be limited: for example, recording 16x / 4x / 4x means that the motherboard has three 16-channel slots, but if three video cards are connected to them at once, then the second and third slots will be able to give speed only to PCI-E 4x level. Accordingly, for a different number of slots and the number of digits will be appropriate. There are also boards with several modes — for example, 16x/0x/4 and 8x/8x/4x (0x means that the slot becomes inoperable altogether).

You have to pay attention to this parameter mainly when installing several video cards at the same time: in some cases (for example, when using SLI technology), for correct operation of video adapters, they must be connected to slots at the same speed.

TPM connector

Specialized TPM connector for connecting the encryption module.

TPM (Trusted Platform Module) allows you to encrypt the data stored on your computer using a unique key that is practically unbreakable (it is extremely difficult to do this). The keys are stored in the module itself and are not accessible from the outside, and data can be protected in such a way that their normal decryption is possible only on the same computer where they were encrypted (and with the same software). Thus, if information is illegally copied, an attacker will not be able to access it, even if the original TPM module with encryption keys is stolen: TPM will recognize the system change and will not allow decryption.

Technically, encryption modules can be built directly into motherboards, but it is still more justified to make them separate devices: it is more convenient for the user to purchase a TPM if necessary, and not overpay for an initially built-in function that may not be needed. Because of this, there are motherboards without a TPM connector at all.

USB 3.2 gen1

The number of USB 3.2 gen1 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the outside of the case (usually on the front panel, less often on the top or side). With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of case USB connectors that can be used with it. At the same time, we note that in this case we are talking about traditional USB A connectors; connectors for newer USB-C are mentioned separately in the specifications.

Specifically, USB 3.2 gen1 (formerly known as USB 3.1 gen1 and USB 3.0) provides transfer speeds of up to 4.8 Gbps and more power than the earlier USB 2.0 standard. At the same time, USB Power Delivery technology, which allows you to reach power up to 100 W, is usually not supported by this version of USB A connectors (although it can be implemented in USB-C connectors).

USB 3.2 gen2

The number of USB 3.2 gen2 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the outside of the case (usually on the front panel, less often on the top or side). With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of case USB connectors that can be used with it. At the same time, we note that in this case we are talking about traditional USB A connectors; connectors for newer USB-C are mentioned separately in the specifications.

As for the USB 3.2 gen2 version specifically (formerly known as USB 3.1 gen2 and USB 3.1), it works at speeds up to 10 Gbps. In addition, such connectors may provide support for USB Power Delivery technology, which allows you to output power up to 100 W per connector; however, this function is not mandatory, its presence should be clarified separately.

Wi-Fi

Wi-Fi version (standard) supported by the motherboard Wi-Fi module. The main function of such modules, regardless of version, is Internet access via wireless routers; however, Wi-Fi can also be used to communicate directly with other devices—for example, to transfer content from a digital camera or control it remotely.

Nowadays you can find support for different Wi-Fi standards (up to Wi-Fi 6, Wi-Fi 6E, Wi-Fi 7). The maximum connection speed primarily depends on this nuance. At the same time, different versions also differ in the ranges used; and they are compatible with each other if they coincide in the ranges used. However, wireless modules of modern motherboards often support not only the Wi-Fi standard specified in the specifications, but also earlier ones; It doesn’t hurt to clarify this point separately, but in most cases there are no compatibility problems. However, to use all the features of a particular version, it must be supported by both devices - both the motherboard and the external device.

The list of major versions looks like this:

- Wi-Fi 3 (802.11g). The oldest standard that is relevant today, in its pure form, is found only in frankly outdated boards. Operates at speeds up to 54 Mbps in the 2.4 GHz band.
— Wi-fi 4 (802.11n). Quite a popular standard, which has only recently begun to give w...ay to more advanced options. Supports both the 2.4 GHz band and the more advanced 5 GHz band, and the maximum data transfer rate is 150 Mbps per channel (up to 600 Mbps with 4 antennas).
— Wi-Fi 5 (802.11ac). Works only on 5 GHz. Initially, the maximum theoretical data transfer rate was 1300 Mbit/s, but since 2016 the 802.11ac Wave 2 standard has been used, where this figure has been increased to 2.34 Gbit/s.
- Wi-Fi 6 (802.11ax). It initially operates on two bands - 2.4 GHz and 5 GHz - but the specification of this standard provides for the possibility of using any operating band between 1 GHz and 7 GHz (as such bands become available). The nominal data transfer speed has increased by only a third compared to Wi-Fi 5, but a number of improvements that increase communication efficiency allow for a significant increase in actual speed - in theory, up to 10 Gbps and even higher.
- Wi-Fi 6E (802.11ax). An improved branch of the Wi-Fi 6 standard with data transfer speeds up to 10 Gbps. The Wi-Fi 6E standard is technically called 802.11ax. But unlike basic Wi-Fi 6, which is named similarly, it provides for operation in the unused 6 GHz band. In total, the standard uses 14 different frequency bands, offering high throughput with many active connections.
— Wi-Fi 7 (802.11be). The technology, like the previous Wi-Fi 6E, is capable of operating in three frequency ranges: 2.4 GHz, 5 GHz and 6 GHz. At the same time, the maximum bandwidth in Wi-Fi 7 was increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit. The IEEE 802.11be standard uses 4096-QAM modulation, which also allows more symbols to be accommodated in a data transmission unit. From Wi-Fi 7 you can squeeze out a maximum theoretical information exchange rate of up to 46 Gbps. In the context of using wireless connections for streaming and video games, the implemented MLO (Multi-Link Operation) development seems very interesting. With its help, you can aggregate several channels in different ranges, which significantly reduces delays in data transmission and ensures low and stable ping. And Multi-RU (Multiple Resource Unit) technology is designed to minimize communication delays when there are many connected client devices.

Bluetooth

The motherboard has its own Bluetooth module, which eliminates the need to purchase such an adapter separately. Bluetooth technology is used for direct wireless connection of a computer with other devices — mobile phones, players, tablets, laptops, wireless headphones, etc.; connectivity options include both file sharing and external device control. The Bluetooth connection range is up to 10 m (in later standards — up to 100 m), while the devices do not have to be in the line of sight. Different versions of Bluetooth (at the end of 2021, the latest of which is Bluetooth v 5) are mutually compatible in terms of basic functionality and have all sorts of differences.

USB 2.0

The number of USB 2.0 connectors installed on the back of the motherboard.

Recall that USB is the most popular modern connector for connecting various external peripherals — from keyboards and mice to specialized equipment. And USB 2.0 is the oldest version of this interface that is relevant today; it is noticeably inferior to the newer USB 3.2 both in terms of speed (up to 480 Mbps), and in terms of power supply and additional functionality. On the other hand, even such characteristics are often enough for undemanding peripherals (like the same keyboards / mice); and devices of newer versions can be connected to the connectors of this standard — there would be enough power supply. So this version of USB is still found in modern motherboards, although there are fewer and fewer new models with USB 2.0 connectors.

Note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the PC case connected to such connectors) can also provide a USB connection. See below for more on this.

USB 3.2 gen2

The number of native USB 3.2 gen2 connectors provided on the back of the motherboard. In this case, we mean traditional, full-size USB A ports.

USB 3.2 gen2(formerly known as USB 3.1 gen2 and simply USB 3.1) is the evolution of USB 3.2 after version 3.2 gen1 (see above). This standard provides connection speeds up to 10 Gbps, and to power external devices in such connectors, USB Power Delivery technology (see below) can be provided, which allows you to output up to 100 W per device (however, Power Delivery support is not mandatory, its presence should be specified separately). Traditionally for the USB standard, this interface is backwards compatible with previous versions — in other words, you can easily connect a device supporting USB 2.0 or 3.2 gen1 to this port (unless the speed will be limited by the capabilities of a slower version).

The more connectors provided in the design, the more peripheral devices can be connected to the motherboard without the use of additional equipment (USB splitters). In some models of motherboards, the number of ports of this type is 5 or even more. At the same time, we note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the case connected to such connectors) can also provide a USB connection. See below for more on this.
Asus ROG STRIX Z390-E GAMING often compared