USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison APC Smart-UPS C 3000VA SMC3000I-RS 3000 VA vs APC Smart-UPS 2200VA SMT2200I 2200 VA

Add to comparison
APC Smart-UPS C 3000VA SMC3000I-RS 3000 VA
APC Smart-UPS 2200VA SMT2200I 2200 VA
APC Smart-UPS C 3000VA SMC3000I-RS 3000 VAAPC Smart-UPS 2200VA SMT2200I 2200 VA
Outdated ProductCompare prices 2
TOP sellers
Typesmartsmart
Form factorstandard (Tower)standard (Tower)
Full load operating time5.8 min8.7 min
Half load operating time17 min24.3 min
Switching to battery10 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range170 – 300 V160-286 V
Max. current16 А15 А
Bypass (direct connection)is absentis absent
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power3000 VA2200 VA
Rated output power2100 W1980 W
Output voltage accuracy5 %5 %
Efficiency97.9 %
Output waveformpure sine wave (PSW)pure sine wave (PSW)
Output frequency47 – 63 Hz47-63 Hz
Reserved C13/C14 connectors88
Reserved C19/C20 connectors11
Battery
Total battery capacity12 Ah7 Ah
Number of batteries44
Full charge time180 min180 min
Cold start
Battery hot swap
Protection
Protection
short circuit protection
overload protection
noise filtering
 
 
sound alarm
short circuit protection
overload protection
noise filtering
data line protection
emergency cut-off socket
sound alarm
Fuseauto
Surge protection300 J365 J
Control interfaces
RS-232
USB
 
 
USB
SmartSlot
General
Screen
Operating temperature0 – 40 °C0 – 40 °C
Noise level45 dB45 dB
Dimensions (HxWxD)435x197x544 mm435x197x544 mm
Weight43 kg48.8 kg
Added to E-Catalogjuly 2019april 2012

Full load operating time

UPS continuous operation time from a fully charged battery when connected to a load with a power equal to the UPS output power (maximum or effective, depending on the type of load, see the relevant paragraphs for details). For a UPS designed to work with a home or office PC, a time of about 10-15 minutes is considered sufficient, this is enough to save data and complete work. To power servers, it is worth using devices with an operating time of 20 minutes or more.

Half load operating time

UPS continuous operation time from a fully charged battery when connected to a load with a power equal to half the output power of the UPS (maximum or effective, depending on the type of load, see below for details). The operating time with such a load is much longer than for a full load, and even in the simplest models it can reach 20-30 minutes.

Switching to battery

The time required to transfer the load from mains power to battery power. In standby and interactive UPSs (see Type), a short-term power failure occurs at this moment — accordingly, the shorter the time to switch to the battery, the more uniform the power supply is provided by the source during a power failure. Ideally, the switching time for the traditional 50 Hz AC frequency should be less than 5 ms (a quarter of one cycle of the sine wave). With inverter UPSs, the transfer time is, by definition, zero.

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Max. current

The maximum current drawn by the UPS. In fact, the current reaches its maximum value only when the UPS is operating from the mains with maximum load power and a completely discharged battery. However, when calculating the load on the power grid, this parameter should be taken into account.

Peak output power

The maximum output power supplied by the UPS, in other words, the highest apparent load power allowed for this model.

This indicator is measured in volt-amperes (the general meaning of this unit is the same as that of the watt, and different names are used to separate different types of power). The total power consumption of the load, implied in this case, is the sum of two powers — active and reactive. Active power is actually effective power (it is indicated in watts in the characteristics of electrical appliances). Reactive power is the power wasted by coils and capacitors in AC devices; with numerous coils and/or capacitors, this power can be a fairly significant part of the total energy consumption. Note that for simple tasks, you can use data on effective power (it is often given for UPS — see below); but for accurate electrical calculations it is worth using the full one.

The simplest selection rule for this indicator is: the maximum output power of the UPS in volt-amperes should be at least 1.7 times higher than the total load power in watts. There are also more detailed calculation formulas that take into account the characteristics of different types of load; they can be found in special sources. As for specific values, the most modest modern UPSs give out 700 – 1000 VA, or even less — this is enough to power a PC of average performance; and in the most "heavyweight" models, th...is figure can be 8 – 10 kVA and higher.

Rated output power

The effective output power of the UPS is, in fact, the maximum active power of the load that can be connected to the device.

Active power is consumed directly for the operation of the device; it is expressed in watts. In addition to it, most AC devices also consume reactive power, which is "wasted" (relatively speaking) is spent by coils and capacitors. Apparent power (denoted in volt-amperes) is precisely the sum of active and reactive power; it is this characteristic that should be used in accurate electrical calculations. See "Maximum output power" for details; here we note that when selecting a UPS for a relatively simple application, it is quite possible to use only effective power. This is at least easier than converting the watts claimed in the characteristics of the connected devices into full power volt-amps.

The most modest modern "uninterruptibles" give out less than 500 watts. 501 – 1000 W can be considered an average value, 1.1 – 2 kW is above average, and in the most powerful models this figure exceeds 2 kW and can reach very impressive values (up to 1000 kW or more in some industrial class UPS).

Efficiency

Efficiency (coefficient of performance) in the case of a UPS is the ratio of its output power to the power consumed from the network. This is one of the main parameters that determine the overall efficiency of the device: the higher the efficiency, the less energy the UPS wastes (due to heating parts, electromagnetic radiation, etc.). In modern models, the efficiency value can reach 99%.

Output frequency

The frequency (frequency range) of the AC voltage output by the UPS. For computer technology, the frequency range of 47-53 Hz is considered normal, although the smaller the deviation from the 50 Hz standard, the better. On the other hand, in some UPS models, this frequency can be automatically synchronized with the frequency of the mains — so the power supplied to the load will not differ regardless of whether the load is powered by the mains or from the battery. In this case, a wider frequency range, on the contrary, is more desirable.