Screen size
Diagonal of the screen installed in a monoblock (see "Type").
In general, the larger the diagonal, the more advanced both the screen and the computer as a whole are considered. The large display size is convenient for games, movies, and some special tasks like layout of large printed materials; in addition, a higher resolution can be provided for such a screen, and more space is available inside the case for advanced components. On the other hand, a larger monoblock will cost much more than a relatively small one, even if the other characteristics of such models are completely the same. In addition, the power of the hardware is not directly related to the size of the screen — high-end monoblocks can be quite small.
As for specific numbers, a
diagonal of 20" or less is considered very limited nowadays,
monoblocks of 21.5" are small,
a 24" screen is medium, and values of
27" and
32" indicate large sizes.
Panel type
The type of matrix used in the monoblock screen (see "Type").
—
TN+film. The simplest and most inexpensive type of modern matrices. In addition to low cost, the advantages of TN + Film include good speed (short response time). But the overall picture quality can be described as average: in terms of brightness, colour gamut and colour reproduction quality, screens of this type are noticeably inferior to more advanced options. However this quality is quite enough for relatively simple tasks like surfing the web or working with documents, and in most cases even for playing games and watching movies; however, TN-Film screens are not suitable for professional work with colour.
—
IPS. A variety of matrices designed for high image quality. In terms of brightness and colour fidelity, such screens are indeed far superior to TN-film, making them excellent for professional use. In addition, these properties are valued among demanding gamers and movie fans. The response time in early versions of IPS screens was quite high, but in modern versions this feature is almost eliminated. But the unequivocal disadvantage of such screens is the rather high cost. Also note that nowadays on the market there are several varieties of IPS, differing in characteristics. For example, E-IPS is a relatively simple and inexpensive option, P-IPS and H-IPS are professional (when they were created, maximum attention was
...paid to colour reproduction), and AH-IPS was developed with an eye on ultra-high resolution screens. So it would not hurt to clarify the specific features of such a screen separately — especially if a monoblock is bought for design, photo processing and other similar tasks that involve careful work with colour.
— pls. In fact, one of the versions of the IPS technology described above, created by Samsung. During development, special attention was paid to both improving performance and reducing the cost of the matrix; in the end, according to the creators, they really managed to achieve higher brightness and contrast, combined with a lower cost. In general, the characteristics are comparable to mid-level versions of IPS.
— *VA. Various versions of VA technology — Fujitsu's MVA, Samsung's PVA and Super PVA, Sharp's ASVA, etc.; In general, there are no key differences in design between these versions. The *VA technology itself was created as a compromise between the speed and affordability of TN-Film matrices and the high-quality "picture" of IPS. The result is screens with more accurate and complete colour reproduction than TN, with good blacks and good viewing angles; the response speed was initially not very high, but in modern versions this drawback has been practically eliminated. At the same time, a feature of *VA screens is that the colour balance of the visible image depends on the viewing angle and changes with the slightest deviation from the perpendicular. With normal PC use, this phenomenon is almost imperceptible, however, such monitors are still poorly suited for professional work with colour.Chipset
The model of the chipset used in the standard configuration of the PC.
A chipset can be described as a set of chips that provides the combined operation of the central processor, RAM, I / O devices, etc. It is this chipset that underlies any motherboard. Knowing the chipset model, you can find and evaluate its detailed characteristics; most users do not need such information, but for specialists it can be very useful.
Type
The general type (specialization) of the processor installed in the PC.
—
Desktop. Processors originally designed for full-sized desktop computers. The specific characteristics of such CPUs can vary quite widely; however, in general, they have higher processing power than mobile chips, as well as a wider range of additional features and special solutions to improve efficiency. And with the same actual performance, desktop solutions are much cheaper than mobile ones. The downside of these advantages is the relatively high energy consumption and heat dissipation. However, for full-sized PCs, these shortcomings are not critical, so almost all traditional desktop computers, as well as most all-in-ones (see "Type") are equipped with this particular type of processor; and for powerful gaming models, a desktop CPU is mandatory by definition. On the other hand, this category also includes rather economical and "cold" low-power chips, which are suitable for compact computers that do not require high performance, such as nettops and thin clients.
—
Mobile. This term in this case refers to processors originally designed for laptops. Most of these CPUs use the same basic architecture as desktop models — x86. Their main differences are: on the one hand, reduced energy consumption, reduced clock frequencies and low heat generation, on the other hand, less computing power in general. However the actu
...al characteristics of such processors may vary from model to model, some laptop solutions are not inferior to fairly advanced desktop ones; however, with similar capabilities, a laptop processor will cost significantly more. Thus, this type of CPU is mainly used in nettops and individual models of monoblocks (see "Type"), where it is difficult to use powerful cooling systems.
A rarer variety of mobile processors used in modern PCs are chips based on the basic ARM architecture. Such processors have even lower heat dissipation and power, and are also often implemented in the System-On-Chip format, when the CPU itself, RAM, wired and wireless connection controllers, and other components are combined in one chip. ARM solutions can be found in Android touchscreen all-in-ones (which are effectively "desktop tablets"), as well as in individual thin clients.Model
The specific model of the processor installed in the PC, or rather, its index within its series (see "Processor"). The full model name consists of the series name and this index — for example, Intel Core i3 3220; knowing this name, you can find detailed information about the processor (characteristics, reviews, etc.) and determine how suitable it is for your purposes.
Cores
The number of cores in a complete PC processor.
The core is a part of the processor designed to process one stream of commands (and sometimes more, for such cases, see "Number of threads"). Accordingly, the presence of several cores allows the processor to work simultaneously with several such threads, which has a positive effect on performance. However note that a larger number of cores does not always mean higher computing power — a lot depends on how the interaction between command streams is organized, what special technologies are implemented in the processor, etc. So, only chips of the same purpose (desktop, mobile) and similar series (see "Processor") can be compared by the number of cores.
In general, single-core processors are practically not found in modern PCs.
Mainly desktop chips of the initial and middle level are made dual-core.
Four cores are found both in desktop CPUs of the middle and advanced class, and in mobile solutions. And
six-core and
eight-core processors are typical for high-performance desktop processors used in
workstations and gaming systems.
Threads
The number of threads supported by the bundled PC processor.
A thread in this case is a sequence of instructions executed by the kernel. Initially, each individual core is able to work with only one such sequence. However, among modern CPUs, more and more often there are models in which the number of threads is twice the number of cores. This means that the processor uses multi-threading technology, and each core works with two instruction sequences: when pauses occur in one thread, the core switches to another, and vice versa. This allows you to significantly increase performance without increasing the clock frequency and heat dissipation, however, such CPUs are also more expensive than single-threaded counterparts.
Speed
Clock speed of the CPU installed in the PC.
In theory, higher clock speeds have a positive effect on performance because they allow the CPU to perform more operations per unit of time. However, this indicator is rather weakly related to real productivity. The fact is that the actual capabilities of the CPU strongly depend on a number of other factors - the overall architecture, cache size, number of cores, support for special instructions, etc. As a result, you can compare by this indicator only chips from the same or similar series (see “CPU”), and ideally, also from the same generation. And that's pretty approximate.
TurboBoost / TurboCore
Processor clock speed when running in TurboBoost or TurboCore mode.
Turbo Boost technology is used in Intel processors, Turbo Core — AMD. The essence of this technology is the same both there and there: if some of the cores work under high load, and some are idle, then some tasks are transferred from more loaded cores to less loaded ones, which improves performance. This usually increases the clock frequency of the processor; this value is indicated in this paragraph. See above for more information on clock speed in general.