USA
Catalog   /   Sports & Outdoor   /   Cycling & Accessories   /   Bikes

Comparison Merida Big Nine 500 2020 frame L vs Giant Talon 29 3 GE 2019 frame L

Add to comparison
Merida Big Nine 500 2020 frame L
Giant Talon 29 3 GE 2019 frame L
Merida Big Nine 500 2020 frame LGiant Talon 29 3 GE 2019 frame L
Outdated ProductOutdated Product
TOP sellers
Model year20202019
Type
mountain (MTB)
mountain (MTB)
Frame and suspension
Frame sizeLL
Frame materialaluminiumaluminium
Suspensionhardtailhardtail
Suspension type (fork)
air-oil /Manitou Markhor Comp/
oil-spring /SR Suntour XCM HLO/
Fork travel100 mm100 mm
Fork lockout
 /hydraulic, with handlebar extension/
Fork materialaluminium
SeatpostMerida Comp CCGiant Sport
Wheels and brakes
Wheel size29 "29 "
Tyre
Maxxis Ikon /2.2"/
Maxxis Ikon /2.2"/
Rim materialaluminium
aluminium /Giant GX03V/
Rim
double wall /Merida Comp CC/
double wall
Front brake
hydraulic disc /Shimano MT-200/
hydraulic disc /Tektro M275, 160 mm rotor/
Rear brake
hydraulic disc /Shimano MT-200/
hydraulic disc /Tektro M275, 160 mm rotor/
Front hub modelShimano TX505Giant Tracker Sport
Rear hub modelShimano TX505Giant Tracker Sport
Handlebar and transmission
Speeds2027
Chainrings2
/crank: ProWheel Burner, 22-32-44T/
Freewheel cogs109
Freewheel/cassette modelShimano HG500Shimano HG201
Bottom bracket modelShimano BB52 BSAFeimin FP-902W
Front derailleurShimano DeoreShimano Altus
Rear derailleurShimano DeoreShimano Alivio
Shifter typetriggertrigger
Shifter modelShimano DeoreShimano Altus
Chain modelKMC X10KMC X9
Handlebar typestraightstraight
StemMerida Comp CCGiant Sport
Handlebar modelMerida Expert CCGiant Connect Trail
HeadsetMerida M4455
General
Equipment
 
chain guard
Saddle modelMerida Comp CCGiant Connect
Pedal modelVP VPE-891MTB Caged
Weight12.2 kg
Added to E-Catalogmarch 2020april 2019

Model year

The year to which the manufacturer classifies the bicycle (more precisely, the model range that includes this model).

The significance of this parameter is that the model range is updated every year, and two bicycles with the same name, but from different years, can differ significantly in characteristics and equipment. At the same time, new models ( 2024, 2023) usually cost more, and older ones ( 2022, 2021, etc.) are sold at reduced prices.

It is worth considering that a later year of manufacture in itself does not necessarily mean more advanced characteristics - manufacturers can change them in the direction of simplification. So the model of previous years may be in no way inferior to the new bike.

Suspension type (fork)

Front fork suspension type (if available, see "Suspension"). All shock absorption systems in bicycles work in two directions: vibration damping (damping) and impact energy absorption (cushioning). Accordingly, they have two main components: a damper and a shock absorber. Depending on the design features of these elements, the following types of depreciation are distinguished:

Spring-elastomer. In this case, the role of a shock absorber is played by an elastic spring, and the role of a damper is played by a rod made of an elastic, well-compressible material, the so-called elastomer. This type appeared as a development of conventional spring damping systems, it is more durable, but poorly suited for low temperatures — the elasticity of the elastomer in such conditions decreases, which negatively affects the characteristics of the system.

Spring-oil. Systems using a spring as a shock absorber and an oil cartridge as a damper. This design is somewhat more resistant to low temperatures than spring-elastomer, and in general has quite good characteristics, due to which it is quite widely used in various types of bicycles. The main disadvantage is the higher (on average) cost.

Air-oil. Combined systems consisting of an air cylinder that acts as a shock absorber and an oil cartridge that acts as a damper. They appeared as a development of “pur...e” air systems, which had a serious drawback: even with high-quality maintenance, the seals wore out rather quickly, which could disable the shock absorber. Air-oil systems are more durable and easier to maintain, while being quite efficient and weighing little. The latter is especially valuable for cross-country (see "Purpose"), where it is required to combine depreciation with a low weight of the machine.

Fork material

— Aluminium. In this case, aluminium is the simplest and most unpretentious option. Its advantages include light weight; on the other hand, in the absence of shock absorption, the steering wheel with such a fork is highly susceptible to vibrations, and in terms of durability, aluminium is somewhat inferior to steel.

— Steel. Another relatively simple option, which at the same time is considered more advanced than the aluminium described above, and is found even in fairly expensive pro-level bikes. This is due to the fact that steel is noticeably stronger and more durable, as it is not as susceptible to "metal fatigue". However such forks weigh a little more than aluminium ones.

— Chromium molybdenum steel. A type of steel that is more advanced than more traditional grades. Among the main advantages of such alloys are high strength and reliability; at the same time, due to such properties, individual elements of the forks can be made thinner, and the forks themselves can be made lighter than ordinary steel ones. The main disadvantage of Cro-Mo steel is the rather high cost.

— Carbon. Lightweight and high-strength carbon fibre forks effectively dampen small bumps in the road under the wheels of the bike and slightly spring on small potholes, thereby providing cushioning on bumpy roads. The carbon fork facilitates the design of the front of the bike. Most often it is found on board "highways" and "gravel roads", less often it is installed in o...ff-road fatbikes. Vulnerable point — carbon forks break under the influence of strong point impacts.

Seatpost

The model of the seatpost used in the bicycle.

Usually, this information is indicated if a high-quality part is used as a seat post. Knowing the name, you can find its detailed characteristics and descriptions; this is unlikely to be needed for light everyday driving, but may be useful for professional use.

Front hub model

The model of the hub used in the front wheel of a bicycle.

The hub is the central part in the wheel through which the axis of rotation passes. Features of the behavior of a bicycle depend on its characteristics, in particular, “rolling” (the ability to move by inertia, without pedaling). Knowing the model of the front hub, you can clarify its characteristics according to the manufacturer's documentation, find reviews from other users, etc., in order to determine how this model suits you.

Rear hub model

Model of the hub used in the rear wheel of a bicycle. See Front Hub Model for details.

Speeds

The number of speeds (gears) provided for in the design of the bicycle. Each transfer has its own so-called gear ratio — in this case it can be described as the number of revolutions that the driven gear (rear, on the wheel) makes in one revolution of the leading gear (associated with the pedals).

Different gear ratios will be optimal for different conditions: for example, high gears provide good speed, but are poorly suited for overcoming obstacles, because. the effort on the pedals increases significantly and the frequency of their rotation decreases. It has been scientifically proven that a cyclist develops maximum power at a cadence of about 80-100 rpm. Thus, the presence in the bike of several speeds allows you to optimally adjust it to different driving modes and features of the tracks in order to provide optimal pedaling force and frequency of their rotation. For example, on smooth asphalt it is best to drive in a high gear, and when overcoming a rise or entering a dirt road, you can lower it in order to effectively overcome resistance.

The number of gears in classic systems is directly related to the number of stars of the system (on the bottom bracket with pedals) and the cassette (on the rear wheel); it can be obtained by multiplying two numbers — for example, 3 stars of the system and 6 on the cassette give 18 gears. However, there is also the so-called planetary hubs — there are stars one at a time, and gear shifting is carried out by a mec...hanism built into the rear hub.

Note that the optimal number of gears depends on the purpose of the bike (see above), and it is not always necessary to have several of them. So, in mountain models, depending on specialization, there can be from 8 to 30 gears, in road ones — within 20-30, and some inexpensive city bikes and most BMXs do not have a gear shift system at all.

Chainrings

The number of stars (gears) of different sizes in the bicycle system. The system in this case means a carriage with pedals, which provides the transmission of movement to the chain and from it to the rear wheel. The more stars installed in the system, the greater the choice of speeds (for more details, see "Speeds"), however, for a number of reasons, this number almost never exceeds 3. One star is usually placed on single-speed models; the exception is bicycles with a planetary rear hub, in which the shift mechanism is located in the rear wheel and is not connected to the system.

Freewheel cogs

The number of stars (gears) of different sizes in a bicycle cassette. A cassette is a part of the rear hub that interacts directly with the chain, in other words, a gear or a set of gears mounted on the hub. In classical gear shifting systems, the number of gears directly depends on the number of stars in the cassette (for more details, see "Speeds"); a single chainring is used either in single speed bikes or in planetary hubs (see System Stars for more on these).
Merida Big Nine 500 2020 frame L often compared