USA
Catalog   /   TVs & Video   /   TVs

Comparison Samsung UE-49RU8000 49 " vs Samsung UE-49NU8000 49 "

Add to comparison
Samsung UE-49RU8000 49 "
Samsung UE-49NU8000 49 "
Samsung UE-49RU8000 49 "Samsung UE-49NU8000 49 "
Outdated ProductOutdated Product
TOP sellers
Main
The presence of a game mode
Support for SmartThings technologies
Size49 "49 "
Operating systemSmart TV (proprietary system)Smart TV (proprietary system)
Display
Matrix*VA
Screen surfaceanti-glarematte
Resolution3840x2160 px3840x2160 px
Upscalingup to 4K
Frame rate60 Hz60 Hz
HDR supportHDR10+HDR10
Brightness / contrast enhancement
 /Contrast Enhancer/
Colour enhancement
 /Dynamic Crystal Color/
Black enhancement
 /Dynamic Black Equalizer/
Multimedia
Sound power20 W40 W
Number of speakers22
Subwoofer
Audio decodersDolby Digital PlusDolby Surround
Digital tuner
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-S2 (satellite)
 
 
 
Features
Features
AirPlay 2
Wi-Fi 5 (802.11ac)
 
Bluetooth
voice control
Amazon Alexa
Google Assistant
Bixby
 
Wi-Fi 5 (802.11ac)
Miracast
Bluetooth
voice control /with OneRemote/
 
 
 
Connectors
HDMI44
HDMI versionv 2.0
Additional inputs
USB
LAN
 
 
USB
LAN
COM port (RS-232)
RS-232
Outputs
optical
optical
General
Wall mountVESA 200x200 mmVESA 200x200 mm
Power consumption89 W
Energy efficiency classA
Dimensions (WxHxD)
1101x701x237 mm /with stand/
1092x711x300 mm /with stand/
Dimensions without stand (WxHxD)1101x637x59 mm1092x635x56 mm
Weight
14.3 kg /with stand/
15 kg /with stand/
Color
Added to E-Catalogapril 2019march 2018

Matrix

The type of matrix used in the TV. Among them, OLED, QLED, QD-OLED and NanoCell deserve the most attention, which are found in TVs of the relevant price category. Now more about each of them and other more classic options:

— OLED. TVs with screens that use organic light-emitting diodes — OLED. Such LEDs can be used both to illuminate a traditional LCD matrix, and as elements from which a screen is built. In the first case, the advantages of OLED over traditional LED are compactness, extremely low power consumption, backlight uniformity, as well as excellent brightness and contrast ratios. And in matrices, consisting entirely of OLED, these advantages are even more pronounced. The main disadvantages of OLED TVs are the high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn-in during long-term broadcast of static images or pictures with static elements (TV channel logo, information panel, etc.).

— QLED. TVs with screens using "quantum dot" technology — QLED. Such screens differ from conventional LED matrices in the design of the backlight: multilayer colour filters in such a backlight are replaced with a thin-film light-transmitting coating based on nanoparticles, and traditional white LEDs are replaced with blue ones. This a...llows to achieve a significant increase in brightness and colour saturation at the same time as improving the quality of colour reproduction, besides, it reduces the thickness and reduces the power consumption of the screen. The disadvantage of QLED matrices is traditional — the high price.

— QD-OLED. A kind of hybrid version of matrices that combine “quantum dots” (Quantum Dot) and organic light-emitting diodes (OLED) in one bottle. The QD-OLED modification was introduced by Samsung at the end of 2021 in response to advanced OLED panels from LG. The technology takes the best from QLED and OLED: it is based on blue LEDs, self-luminous pixels (instead of external backlighting) and “quantum dots”, which play the role of colour filters, but at the same time practically do not attenuate the light (unlike traditional filters) . Thanks to the use of a number of advanced solutions, the creators managed to achieve very impressive characteristics, significantly superior to many other OLED matrices. Among them are high peak brightness from 1000 nits (cd/m²), excellent contrast and black depth, as well as colour coverage of over 90% according to the BT.2020 standard and more than 120% according to DCI-P3. Such matrices are found mainly in flagship TV panels.

— IPS. A type of matrix originally designed for high quality colour rendering. Indeed, IPS screens produce bright and rich colours, have a good colour gamut, and demonstrate wide viewing angles. The initial disadvantage of this technology was the low response time, but in modern modifications of IPS this point has been practically eliminated. Matrices of this type are very popular in the advanced budget and mid-price segment of TV panels.

— *VA. In this case, we mean one of the varieties of VA (Vertical Alignment) type matrices - MVA, PVA, Super PVA, etc. Specific varieties may vary slightly in properties, but they all have common features. In fact, *VA matrices are a more affordable alternative to IPS panels: they are relatively inexpensive, provide fairly good colour reproduction and viewing angles of up to 178°. The main disadvantage of such screens is the long response time, but in modern models this has been practically eliminated thanks to the constant improvement of technology. *VA matrices are used in TVs that are positioned as functional and at the same time affordable models.

— PLS. In fact, it is one of the varieties of the IPS matrices described above, developed by Samsung. According to the manufacturer, in such matrices it was possible to achieve higher brightness and contrast than in traditional IPS, as well as to slightly reduce the cost.

NanoCell. Matrix based on quantum dots. This type of matrix is used in LG TVs and was first introduced in 2017. NanoCell matrices use the structure of classic LCD displays. But unlike the latter, they use so-called quantum dots instead of the classic general backlight, which provide monochromatic light. NanoCell technology reduces power consumption while increasing colour gamut and viewing angle. It is worth noting separately that NanoCell matrices are not the only ones using quantum dot technology. Similar solutions are offered by: Samsung (QLED matrix), Sony (Triluminos matrix), Hisense (ULED).

Screen surface

The type of coating used on the TV screen.

Matte. Historically, the first type of coating for LCD screens, which is often found today. Screens with such a coating generally have average characteristics of brightness, saturation and colour reproduction quality, in terms of these indicators they are inferior to glossy counterparts. However, the matte coating has one important advantage: it has virtually no glare from ambient light. In some situations, this can be an important advantage — for example, if the TV is installed opposite the window. And for some users it is more pleasant to look at the screen without glare, albeit relatively dim.

Glossy. A coating designed to improve the brightness and colour quality of the visible image compared to matte screens. The creators have managed to achieve this goal: "glossy" screens really provide rich, vibrant colours and a brighter image. The key disadvantage of such screens is the appearance of glare from ambient light on them — this can ruin the whole viewing experience. Because of this, the classic glossy coating is practically not used today, anti-glare solutions have taken its place (see below).

Glossy (anti-glare). Modification of the glossy coating, created, as the name implies, in order to eliminate the main drawback of the classic gloss — glare from external lighting. This is not to say th...at such screens do not glare at all, but there are much less reflections on them than on ordinary glossy ones. As for the image quality, it is at least not much worse, and often even better (especially since such coatings are constantly being improved). Thanks to all this, most modern TVs of all price categories are equipped with anti-glare screens.

Upscaling

TV support for Upscaling function. This feature is only available on models with 4K and 8K resolution screens.

Upscaling to 4K allows you to increase the resolution of the original “picture” to 4K (3840x2160), if it was initially lower - for example, viewing a movie in 4K that was originally recorded in Full HD (1920x1080). In this case, we are not just talking about “stretching” the image to fill the entire screen (all TVs are capable of doing this), but about special processing, thanks to which the actual video resolution is increased. Of course, such video will still be inferior to content originally recorded in 4K; however, upscaling provides a noticeable improvement in quality compared to the raw signal.

Upscaling to 8K works on the same principle, only relevant for 8K TVs.

HDR support

TV support for high dynamic range technology — HDR.

This technology is designed to expand the range of brightness reproduced by the TV; Simply put, an HDR model will display brighter whites and darker blacks than a regular TV. In fact, this means a significant improvement in colour quality. On the one hand, HDR provides a very "live" image, close to what the human eye sees, with an abundance of shades and tones that a normal screen cannot convey; on the other hand, this technology allows to achieve very bright and rich colours.

However for the full use of this feature, you need not only an HDR TV, but also content (movies, TV broadcasts, etc.) that was originally created for HDR. Also note that there are several different HDR technologies that are not compatible with each other. Therefore, when buying a TV with this feature, it is highly advisable to clarify which version of HDR it supports (HDR10, HDR10 + or Dolby Vision). And the following are found:

— HDR10. Historically the first of the consumer HDR formats, less advanced than the options described below but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content, and it is also common for Blu-ray discs. Allows to work with a colour depth of 10 bits (hence the name). At the same time, devices of this format are also compatible wi...th content in HDR10+, although its quality will be limited by the capabilities of the original HDR10.

— HDR10+. An improved version of HDR10. With the same colour depth (10 bits), it uses the so-called dynamic metadata, which allows transmitting information about the colour depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in colour reproduction.

– Dolby Vision. An advanced standard used particularly in professional cinematography. Allows to achieve a colour depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream — HDR and standard (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern video technology this format is usually combined with HDR10 or HDR10+.

Brightness / contrast enhancement

TV support for one or another brightness / contrast enhancement technology.

Usually, in this case, software image processing is implied, in such a way as to improve brightness and/or contrast (if necessary). Specific processing methods may be different — in particular, in some cases we are actually talking about turning standard content into HDR (see above), and some manufacturers do not specify technical details at all. The effectiveness of different technologies can also be different, and besides, it is highly dependent on the specific content: in some cases, the improvement will be obvious, in others it may be almost imperceptible. Also note that this feature is not always useful, so in most models it is turned off.

Colour enhancement

The TV's support of one or the other colour enhancement technology.

Such technologies usually involve image processing in software to provide brighter and/or more accurate colours. Specific processing methods may be different, some manufacturers do not specify technical details at all, limiting themselves to advertising statements. The effect of using such technologies can also vary: in some cases it is clearly visible, in others it is almost absent, depending on the features of the picture. It is also worth saying that this feature, usually, needs to be turned on manually in the TV menu (accordingly, it can be turned off if desired).

Black enhancement

TV supports some kind of black enhancement technology.

Deep blacks are as important to an image as the quality of other colours. At the same time, it is not as easy to achieve it as it might seem at first glance: the black areas of the screen are “lit up” by the backlight and, without additional tricks, may not look dark enough. Thus, modern TVs use various additional black enhancement technologies. One of the options for this technology is local backlighting, in which LEDs are placed not on the sides of the screen, but behind it: each of them illuminates its own section of the sensor and can be turned off if necessary. There are other, more complex ways to achieve high-quality black.

Sound power

The nominal power of the sound produced by the TV's sound system.

The larger the screen and the greater the estimated distance to the viewer, the more powerful the sound system must be in order to be heard normally. Manufacturers take this moment into account, moreover, most often they also provide a solid volume margin. So if a TV is bought for home viewing in a quiet, calm environment, you can not pay much attention to the sound power: it is guaranteed to be enough for such a usage. It makes sense to specifically look for models with high-power speakers for a noisy environment — for example, a cafe or other public space. Detailed recommendations on this matter can be found in special sources, but here we note that even in such cases, connecting external speakers can be a good alternative.

Subwoofer

The presence of a subwoofer as part of the TV sound system.

A subwoofer is a specialized speaker for bass and ultra-low frequencies. It makes the sound richer in the bass, which is especially useful when watching adventure films with appropriate sound effects (bumps, explosions), as well as concerts. It should noted that the specifications of built-in subwoofers are usually much more limited than those of external ones; so don't expect cinema-like bass from a TV audio system. However, the advantage in bass quality for such TVs (compared to models without a subwoofer) will still be noticeable.
Samsung UE-49RU8000 often compared
Samsung UE-49NU8000 often compared