USA
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   Air Rifles

Comparison Umarex NXG APX vs Baikal MP-512C

Add to comparison
Umarex NXG APX
Baikal MP-512C
Umarex NXG APXBaikal MP-512C
Outdated ProductOutdated Product
TOP sellers
Typemulticompressionspring-piston
Specs
Caliber4.5 mm4.5 mm
Muzzle velocity245 m/sec105 m/sec
Muzzle energy3 J
Cocking systemunderbarrel leverbreak-barrel
Barrelsmoothrifled
Charging
multiply charged /built-in ball magazine/
single shot
Type of ammunitionbullets and ballsbullets
More features
Sighting deviceaiming bar and front sightaiming bar and front sight
Scope mount"dovetail""dovetail"
Fusemanualauto
Adjustable trigger
General
Barrel length520 mm450 mm
Total length990 mm1090 mm
Stock material
 
plastic
wood
plastic
Weight1.52 kg3 kg
Added to E-Catalogseptember 2017july 2013

Type

The type describes the basic operating principle of the rifle. Nowadays, you can find pneumatics with a spring-piston operating principle (with a regular or gas spring), with pre-pumping (PCP), with pumping before each shot ( multi-compression rifles), with power from carbon dioxide cartridges and with an electric drive. Here is a more detailed description of each of these types:

— Spring-piston. As the name suggests, the mechanism of such rifles is based on a spring-loaded piston moving in a cylinder. The weapon is cocked manually (usually by a lever or by breaking the barrel), with the piston being pulled back and fixed, the cylinder being filled with air, and when the trigger is pulled, the piston is released and moves forward under the action of the spring, pushing the air out of the cylinder into the barrel. Rifles of this type are distinguished by their simple and reliable design, low cost, low maintenance, and ease of repair and tuning; they are considered an ideal option for beginner shooters, as well as for fans of entertaining short-range shooting, and there are also airsoft models among them. It is also worth mentioning the excellent repeatability of shots (with each cocking, a strictly defined portion of air enters the cylinder) and insensitivity to he...at and cold. On the other hand, such rifles require cocking (and most often reloading) before each shot, which can be quite tiring; and the operation of the piston mechanism creates a specific recoil, which negatively affects accuracy and complicates the search filter of optical sights (special optics are required, originally intended for such use). In addition, this type of pneumatics cannot be kept charged for a long time - with prolonged compression, the mainspring loses its properties.

— With a gas spring. In general, the operating principle of this type of rifle is similar to the spring-piston rifles described above. The difference is that instead of a conventional metal spring, they use a sealed reservoir with a special gas, which acts as a spring — compressing when cocked and expanding when fired. This design has a number of advantages over a conventional spring-piston rifle. Firstly, the entire mechanism operates much smoother and quieter, and the recoil is softer, which improves accuracy and simplifies the search filter of optics. Secondly, the gas spring does not change its properties as it wears out, and such a weapon can be stored even in a cocked state. Thirdly, repairs and maintenance for gas springs are required less often and are cheaper (in terms of the number of shots between visits to the workshop). The disadvantages of this type of rifle, in addition to the need to cock the spring before each shot, include a slightly higher cost than classic spring-piston rifles, as well as sensitivity to cold: as the temperature drops, the gas pressure in the spring decreases, which reduces efficiency.

— PCP (pre-pumping). The source of energy in rifles of this type is a built-in reservoir containing air (or another gas) under very high pressure — about 200 or even 300 atmospheres. This reserve is enough for at least several dozen shots, and a compressor, a scuba tank or a special high-pressure pump can be used to fill the reservoir (sometimes such pumps are even supplied in the kit). In general, PCP is considered the most advanced type of pneumatics; it is these rifles that professional hunters and sportsmen use. This is primarily due to the fact that such a design allows for a very high bullet speed, and the recoil is almost imperceptible — all this allows for accurate shooting even at long distances. With a fresh gas, the rifle gives excellent repeatability of shots; however, as the gas is consumed, the initial speed of the bullet decreases, but advanced models may be equipped with a reducer that compensates for this phenomenon (for more details, see "Air supply with a reducer"). PCP pneumatics can be easily made multi-shot and provide very simple and convenient ways of feeding the next bullet into the barrel. The main disadvantage of such rifles is the high price.

— Multi-compression. Another type of rifle with a built-in reservoir; however, unlike the PCPs described above, the reservoir must be pumped up before each shot. For this purpose, the design provides a built-in pump controlled by a lever or other similar device; to pump in a sufficient amount of air, as a rule, you need to make several movements. Such rifles have virtually no recoil, while they are noticeably simpler and cheaper than PCP pneumatics, but inferior to it in power. In addition, pumping up the reservoir before each shot is quite a tedious task; and the volume of air supplied to the reservoir with each filling (and, accordingly, the working pressure in the reservoir) will depend on the number and amplitude of movements made by the pump lever. On the one hand, this allows you to adjust the power directly "on the go": for example, for a short range, where the maximum bullet speed is not required, you can pump the rifle not completely in order to save energy. On the other hand, the actual volume of air and pressure in the reservoir will be slightly different with each reload, even with the same number of lever movements. This has a negative effect on the repeatability of shots. Due to this combination of features, multi-compression models are not very popular these days, and their purpose is mainly recreational shooting.

— Gas cylinder. A type of pneumatics that operates from replaceable gas cylinders, usually liquefied carbon dioxide. Like PCP, such a reservoir allows you to make a lot of shots — even a traditional 12-gram cylinder is usually enough for several dozen; and some models use containers for 88 g of carbon dioxide. At the same time, the rifles themselves are cheaper than PCP, but have less power. It is also worth noting the rather specific characteristics of carbon dioxide as an energy source. On the one hand, it maintains working pressure for quite a long time — it does not decrease as long as liquid carbon dioxide remains in the cylinder. On the other hand, the actual gas pressure depends on the ambient air temperature, and the initial velocity of the bullet in such pneumatics can change significantly even with daily temperature fluctuations. And one of the clear disadvantages of such rifles is that you have to buy not only bullets for them, but also gas.

— AEG (electrically driven). Pneumatics that use an electric motor drive as a source of energy. In terms of the design of the working mechanism, it is similar to a spring-piston one — the basis of this mechanism is a cylinder and a spring-loaded piston. However, in this case, the piston is not pulled back manually, but with the help of the aforementioned electric motor. For the shooter, this means, first of all, that the rifle does not need to be cocked by muscle force — to fire, it is enough to press the trigger, the electric motor will do the rest. In addition, in such pneumatics, an automatic shooting mode can be easily provided (see below). Note that for a number of reasons, this operating principle is practically not found in traditional pneumatics, but it is very popular in airsoft models; such rifles ("drives") often copy real combat weapons.

Muzzle velocity

The muzzle velocity provided by the rifle - that is, the speed of the bullet as it exits the barrel.

All other things being equal, a higher bullet speed provides greater range and accuracy, and also simplifies aiming at long distances: the bullet flies along a smoother trajectory and requires fewer adjustments in height, and the influence of side winds decreases with increasing speed. On the other hand, this indicator directly affects the price of the rifle; and in some countries, legal restrictions on the ownership of pneumatic weapons are also related to the muzzle velocity of the bullet.

As for specific values, in the weakest modern rifles the initial speed does not exceed 150 m/s, and in the most powerful it can be 300 - 350 m/s or even more(remember, the speed of sound is 330 m/s). In general, for recreational shooting at short distances, this parameter is not particularly important, and detailed recommendations for choosing pneumatics for more specific situations can be found in special sources. Let us only note that in AEG electric drives (see “Type”) the initial speed extremely rarely exceeds 150 m/s, but this is done solely for safety reasons: such “weapons” are intended for military-tactical games and initially involve shooting at people, and the high speed would be unsafe for players even with protective equipment.

It is also wor...th considering that this indicator is not strictly defined. In any type of pneumatic it depends on the weight of the bullet (the lighter the faster); therefore, in the characteristics it is usually customary to indicate a certain average velocity for standard ammunition (usually weighing 0.5 g, in AEG - 0.2 g). In addition, in multi-compression rifles the actual speed of the bullet is determined by the degree of inflation, in gas-cylinder rifles it is determined by the ambient temperature, and in PCP models it is possible to achieve higher speeds than declared by replacing the air with a special gas (for example, helium). Nevertheless, this characteristic makes it possible to evaluate the capabilities of the rifle and compare it with other models, including those that differ in type.

Muzzle energy

The muzzle energy provided by the rifle.

Muzzle energy is the kinetic energy of the bullet at the exit from the barrel. This energy, in turn, depends on two factors: the mass and the muzzle velocity of the bullet. Thus, this indicator directly describes the overall power of the rifle: higher muzzle energy allows you to effectively fire at longer distances and/or heavier ammunition. On the other hand, an increase in power accordingly affects the cost of weapons.

Note that muzzle energy can be grounds for legal restrictions on the purchase/use of pneumatics. So, in some countries in the post-Soviet space, the maximum value allowed for freely sold rifles is 7.5 J — a special permit will be required to purchase more powerful weapons. And most freely sold rifles in such regions have a power of the order of 3 – 5 J. Such legal restrictions should be clarified separately. Lower rates are found mainly among “soft” pneumatics for airsoft (airsoft), using 6 mm plastic balls. For such models, a value of more than 2 J is already considered very solid, and in games such rifles are used with a minimum distance limit — for example, 15 m or 20 m (so that a shot from too close a distance does not injure the player).

It is also worth saying that the claimed characteristics of air rifles may, at first glance, not correspond to physical calculations. For example, for a model for the same 7.5 J..., the initial speed of 250 m/s can be claimed in the characteristics; for a 4.5 mm bullet weighing 0.5 g (the average, most popular weight), this would correspond to an energy of as much as 15.6 J. However, there are no inconsistencies here: such characteristics mean that the muzzle velocity was measured for a lighter bullet (for example, 0 .2 g), which accelerates more strongly at the outlet of the barrel. Accordingly, with heavier ammunition, the speed will be lower; it can be determined using special formulas or online calculators.

Cocking system

The type of cocking system provided in the design of the rifle.

The cocking system is responsible for setting the trigger mechanism to the combat cocking position (ready to fire), and in the case of a multi-shot design, also for feeding the next bullet into the chamber. Such systems are usually divided by the control method. The options encountered today include, in particular, a barrel break, a lever ( side or under-barrel), a pump mechanism, a bolt(including such varieties as biathlon and bolt), and an automatic cocking system. Here are the main features of each of these systems:

— Barrel break. In rifles with this type of cocking, the barrel is fixed on a rotary axis, and folds down with each reload. In this case, not only the trigger mechanism is cocked, but the chamber also opens, allowing you to load the next bullet. This option is found exclusively in spring models - conventional and with a gas spring (see "Type"), it is with such rifles that the barrel break is most compatible. One of the key advantages of such systems is their low cost. In addition, "breaks" are very easy to use, do not require special skills and are suitable even for inexperienced shooters. So such pneumatics...are extremely popular these days. At the same time, they are usually made single-shot (with very rare exceptions), constant folding and unfolding of the barrel can be quite tedious, and the barrel mount tends to loosen as it wears out, which reduces accuracy and power.

— Automatic cocking. Systems that do not require any additional actions from the shooter to cock the weapon; found in PCP pneumatics (see "Type"), gas-cylinder models, and AEGs (the latter are by definition made only with automatic cocking). In accordance with the name, the cocking in such weapons is carried out automatically before each shot - as a rule, with the next bullet being sent into the chamber (although there are also single-shot models where the bullet must be inserted manually). In any case, the automatic cocking is extremely simple and easy to use. In addition, even fully automatic weapons can be created on the basis of such mechanisms (see "Automatic mode"), although most rifles with this feature still operate in the single-fire format. The disadvantages of such systems include the complexity of the design and the rather high cost, as well as the fact that air/gas is additionally consumed for the automatic cocking. This reduces the number of shots per charge, and can also reduce the initial velocity compared to similar models with manual reloading (however, the latter is typical mainly for gas-cylinder rifles).

— Under-barrel lever. Systems that use a lever under the barrel, which must be pressed down with each cocking. Like the barrel break described above, this method is used primarily with spring-piston mechanisms and gas springs. It is more convenient and reliable, since the rifle barrel remains stationary at all times, and its design does not include fasteners that can become loose and fail. On the other hand, the lever design is noticeably more complex and expensive than the break-action design, and therefore is quite rare.
Note that the pumping lever in multi-compression models (see "Type") is usually not responsible for cocking the weapon, so a different cocking method is specified for such rifles (although there are exceptions). And in gas-cylinder models, there is a special type of under-barrel lever - the so-called Henry bracket, like in classic cowboy Winchesters (in fact, such pneumatics usually just copy this weapon).

— Side lever. Systems that use a lever on the side of the rifle — usually on the right. They are found mainly in models with a spring-piston mechanism or a gas spring. As in the case of an under-barrel lever, the main advantage of this method is the immobility of the barrel, which contributes to accuracy and reliability. On the other hand, such a cocking system is usually made for right-handers and can be inconvenient when shooting from the left shoulder; in addition, a side lever is somewhat more difficult to fit into a design than an under-barrel lever. Therefore, this option has not become very popular.

— Bolt. Systems using a classic type of bolt handle — sliding back and forth. This type of cocking does not provide air pumping, and therefore is used only in gas-cylinder rifles, PCP, and some multi-compression models (see "Type"). Pneumatics with bolts are mainly made multi-shot — this is the very idea of such systems (feeding the next bullet from the magazine); however, there are exceptions. In general, this is a fairly simple, practical and reliable method of cocking, but nowadays more specific types of bolts are increasingly used — biathlon and bolt; they are listed separately in our catalog and described below.

— Biathlon bolt. A type of bolt (see above), copied from small-caliber biathlon rifles. In such systems, as in traditional bolt mechanisms, the cocking handle is located on the side and moves back and forth. The key difference is that this handle is fixed on a rotating mount and does not slide along the guides when reloading, but swings on the axis. The biathlon bolt differs from the similar in design side lever (see above) in its location (at the rear of the rifle), shorter lever length, and the fact that it does not provide air inflation. Many shooters consider this bolt more convenient than the classic one — in particular, it has a very small operating force, due to which you can move the lever without taking your eyes off the sight. And in some models, you don’t even need to remove your “shooting” hand from the handle to cock the bolt — just hook the lever with your index finger, pull it towards you with a light movement of the wrist, and then, if necessary, move it forward with your thumb. The biathlon bolt is used almost exclusively in PCP rifles (see "Type").

— Bolt action. A type of bolt (see above) that not only moves back and forth when reloading, but also rotates around its axis — similar to how it happens in many classic firearms like the Mosin rifle or Remington 700. In fact, the resemblance to real weapons is one of the key advantages of such systems: they are valued by fans of traditional rifles, and can also be good training simulators for developing basic shooting skills from more serious "bolt" weapons. Most pneumatics with such cocking systems are PCP or gas-cylinder, only a few models use the multi-compression principle (see "Type").

— Pump mechanism. Systems in which a movable fore-end is used for cocking — as in pump-action shotguns, hence the name. The main convenience of such systems is that cocking can be done without removing your hands from the weapon. On the other hand, the constant movement of the fore-end throws off the sight and has a negative effect on accuracy, so this cocking method is not particularly popular in air rifles.

Barrel

The type of barrel installed in a rifle.

This parameter is specified according to the type of the inner surface of the barrel, the options can be as follows:

Rifled. A barrel with spiral grooves applied to the inner surface. This is the most popular option among modern air rifles — in fact, the term “rifle” itself comes from the helical rifling in the barrel. Thanks to the internal rifling, the bullet flying out of the weapon twists around the longitudinal axis, which ensures a stable trajectory and improves shooting accuracy. The only disadvantage of this type of barrel is its poor suitability for working with balls: there are relatively few rifled rifles compatible with these types of ammunition, and it is best to use special balls made of lead or other soft material with them (traditional steel balls wear out the rifling a lot). However, this point cannot be called a serious drawback.

Smooth. A barrel with a flat inner surface, without rifling. One of the main practical advantages of such a design is its "omnivorousness": smooth barrels can be used for both bullets and balls (although the specific type of ammunition used depends on the rifle model). In addition, a flat surface is noticeably simpler and cheaper to produce than a rifled one. The main disadvantage of such weapons is their rather low accuracy, since the projectiles fired from them are not stabilized by r...otation. Smooth-bore rifles are intended mainly for recreational shooting at short distances; it is also worth noting that such barrels were originally used in airsoft guns, in particular, AEGs (see "Type").

Charging

Load capacity determines the amount of ammunition that can fit in a rifle's magazine at one time.

Single shot. As the name suggests, these rifles can only hold one bullet, usually directly in the chamber (back of the barrel); You have to reload your weapon after every shot. This is not very convenient due to the need for additional manipulations, and the rate of fire suffers significantly. At the same time, single-shot rifles are usually quite simple in design, which ensures, on the one hand, reliability, and, on the other hand, low cost.

Multi -charged. Rifles that can hold multiple bullets or pellets in a single charge. For their placement, special devices are used — removable or non-removable stores, drums, etc. The capacity is usually between five and several dozen rounds of ammunition. At the same time, for "omnivorous" models (see "Type of ammunition"), the capacity for balls is usually higher than for lead bullets — often 2-3 times; there are even options that are multiply charged only when using balls — bullets in them can only be loaded one at a time. The advantage of a multi-shot weapon over a single-shot weapon is obvious: you can fire several shots from it without being distracted by reloading. Reloading itself, if more difficult, is not much. On the other hand, due to the complexity of the design, such models are significantly more expensive; and in some types of pneum...atics (see above), multiply charged is not applicable by definition.

Type of ammunition

The type of ammunition that the rifle is designed to use.

— Bullets. In this case, a bullet is a projectile of a directional shape, with a clearly defined front and back. The specific shape of such projectiles may be different, but they all have a number of common features. Thus, any bullet with the same initial speed flies further and hits more accurately than a ball. And lead or another soft metal is usually used as a material, which gives a number of advantages. Firstly, bullets work great with rifled barrels (see "Barrel"): the edges of the bullet fit neatly into the grooves on the inner surface (many bullets are even able to slightly expand at the moment of firing, for the most dense placement in the barrel), the projectile effectively spins and stabilizes, while the wear of the rifling is minimal. Secondly, bullets flatten when hitting a more or less hard surface - this minimizes the risk of ricochets and allows the use of such ammunition even when hunting fairly large game. The only disadvantage of bullets is their higher cost than balls.

— Balls. Most models using this type of ammunition are intended for airsoft and are AEGs (see "Type") or spring-piston ("spring" in airsoft jargon) rifles. The balls in this case are plastic, large in size, which reduces the penetration ability and minimizes the likelihood of injury. Traditional air rifles for this type of ammunition are very rare. They use metal balls - usually made of steel with or without a...copper or zinc coating, less often made of lead. Such shells are very inexpensive and have good penetration, but are noticeably inferior to bullets in terms of convenience and efficiency. Firstly, the balls themselves are less accurate, they have a greater spread and lose speed faster. Secondly, the hard metal makes it difficult to use with rifled barrels, which, again, further reduces accuracy. Thirdly, due to the same hardness, steel balls often ricochet. The last two points are not relevant for the lead balls mentioned, but they are much less common than steel ones. So, in general, this type of ammunition can be recommended for recreational shooting at short distances - up to 10, less often up to 20 m.

— Lead bullets/balls. Rifles that accept both bullets and balls. For more information on each type of ammunition, see above, but here we note that the main option in this case is still bullets; balls should be considered a backup option. As a rule, such "omnivorous" rifles are supplied with separate magazines for different types of projectiles.

Fuse

The type of safety provided in the design of the rifle.

Recall that the fuse is a device that prevents an unwanted shot. In air rifles, such a device can be automatic or manual, and in some models it is absent altogether. Here are the features of each option:

— Manual. Fuse, switched on and off exclusively manually, at the will of the shooter. The most common variety — such mechanisms are as simple and inexpensive as possible. They are somewhat less safe than automatic ones (see below) and require more careful attention; however, it is not difficult to develop the skill to properly handle the manual safety. And in multi-shot models, the advantage of manual safety over automatic is that there is no need to make unnecessary actions between shots.

— Automatic. A fuse that, at a certain moment, works automatically, without additional actions on the part of the shooter. Most often, such systems operate in this way: the weapon automatically becomes on the safety lock after the trigger is cocked, and in order to make a shot, you must first turn off the safety lock manually. This provides more safety than in the manual systems described above: if the shooter forgets about the fuse, the shot will not happen anyway. Particularly popular are automatic safety locks in cocked rifles due to a broken barrel (see "Cocking System"): such a mechanism does not allow you to pull the trigger until the shooter has completed relo...ading. But in other types of pneumatics, this option is rare.
In addition, this category may include systems that are not fuses in the original sense of the word — for example, a mechanism that prevents the bullet from feeding into the chamber of a PCP rifle (see “Type”) if there is already a charge there.

— Is absent. No separate fuse. A similar design is found in two varieties of air rifles. The first is low-cost models with a spring principle of operation (including those with a gas spring; see "Type"). In such models, the fuse is abandoned solely to simplify and reduce the cost of construction; it is worth buying such a rifle only if the future owner knows the safety rules when handling weapons.
The second type of pneumatics without fuses are high-end PCP rifles designed for professional shooters. Similarly, the role of the "fuse" when using such weapons is played exclusively by the skills and experience of the user himself.

Barrel length

The working length of the rifle barrel is from the chamber where the bullet is loaded to the muzzle. The shortest barrels found nowadays have a length of just over 200 mm(and in some AEGs even less than this value); the longest reach 500 – 600 mm.

There is a stereotype that the muzzle velocity directly depends on the length of the barrel. In firearms, this is true — but not in pneumatics. Firstly, in such rifles, the initial velocity depends on a number of other indicators — pressure, the quality of the barrel treatment, the efficiency of the valves, etc. on the first 20 – 25 cm of the barrel, then the gas pressure drops noticeably. The exception is PCP rifles, in which the longer barrel really makes it easier to achieve high speeds. However, again, so many additional factors affect the final result that models with the same barrel length can differ markedly in initial speed.

The second common stereotype is that a longer barrel improves accuracy and accuracy. This is true in the context that a longer barrel allows for a greater distance between the front and rear sights, making it easier to aim carefully. Technical accuracy does not depend on the length, but on the quality of the barrel processing.

Summing up all of the above, we can say that the length of the barrel for an air rifle is more of a reference than a really significant paramete...r, and when choosing, it is better to focus on more "close to life" characteristics — first of all, directly claimed muzzle velocity.
Umarex NXG APX often compared