USA
Catalog   /   Sports & Outdoor   /   Activities & Electric Vehicles   /   Scooters

Comparison iTrike SR 2-053-4 vs Explore Stunt Step

Add to comparison
iTrike SR 2-053-4
Explore Stunt Step
iTrike SR 2-053-4Explore Stunt Step
Outdated ProductOutdated Product
TOP sellers
Product typestunt scooterstunt scooter
Max. load100 kg100 kg
Age, from8 years8 years
Design
Number of wheels2 wheels2 wheels
Handlebar typeBat-WingT-bar
Deck materialsteelaluminium
Clamp3 bolts
Front wheel size10 cm11 cm
Rear wheel(s) size10 cm11 cm
Wheel rigidity82A
Wheelspolyurethanepolyurethane
BearingABEC 7
Rear brakefootfoot
General
Max. height86 cm100 cm
Deck size
47 cm /length/
Footspace36 cm
Weight3.2 kg
Color
Added to E-Catalogmarch 2020june 2017

Handlebar type

T-bar. A traditional scooter handlebar in the form of a horizontal crossbar on a vertical bar. It is found in almost all types of scooters. Note that in kickboards such a steering wheel usually needs to be tilted rather than turned.

Bike handlebar. The handlebar has a characteristic curved shape, in which the handles are bent back or moved upward relative to the middle. It is considered more convenient than the classic one, but it is more complex in design and costs more, and the difference in convenience is not so often noticeable. Therefore, this option is found much less frequently, mainly in fairly advanced models — in particular, most bicycle scooters are equipped with just such handlebars.

— Round handle. The handlebar is in the form of a ring or a pair of rings (a kind of “ears”) mounted on a vertical rod; There are also options without a top ring at all, in which the rod ends with a round knob. In any case, this design is used in models where the handlebar does not turn, but tilts from side to side — these can be either kickboards or some specific trikes (see “Type”).

Y-bar. A handlebar with a bend in the top tube in the shape of the letter Y. Often in such handlebars, side supports are used to strengthen the structure, due to which Y-shaped handlebars are considered more durable in comparison with classic T-bars.

...Bat-Wing. The shape of the Bat-Wing resembles Y-shaped rudders, but in the upper segment of this version, there is a special horizontal crossbar to strengthen the structure. Bat-Wing handlebars can withstand heavy loads and are installed primarily on stunt scooters.

Deck material

The weight of the scooter, its strength and resistance to stress depend on the material of the deck. In modern models, the following options can be used:

Plastic. In scooters, this material belongs to the entry-level. The strength of plastic is low, it is not designed for heavy weight and serious loads — and, therefore, it is found mainly in models of the younger age group and the classic type (see above). On the other hand, in this category, plastic shows itself at its best: it can have almost any colour and pattern, it weighs a little, and it is inexpensive.

Aluminium. Aluminium-based alloys combine strength, resistance to stress and low weight, due to which they are quite popular as a material among all types of scooters (see above).

Steel. The main advantage of steel is its high strength, exceeding even aluminium, not to mention plastic. On the other hand, this material has a large weight and therefore is used less often than others, mainly in bicycle scooters (see "Type") of the older age group.

Magnesium alloy. A fairly advanced material that combines very low weight with high strength and elasticity. At the same time, its cost is also quite high. Therefore, magnesium frames can be found mainly in expensive premium models.

Carbon. Thi...s term usually refers to carbon fibre — carbon fibre in combination with a polymer filler. Carbon is considered a premium material: its strength is comparable to steel, and its weight is much less. However, such material is sensitive to point impacts — cracks may appear from them. However, in general, such a “trouble” requires a rather unfortunate set of circumstances. But one of the unequivocal disadvantages of carbon can be called a high cost. In addition, we note that this material is used mainly in electric scooters (see "Type") — for other varieties, for several reasons, it is easier to use more affordable materials, even if we are talking about an expensive and high-quality model.

Clamp

 

Front wheel size

The diameter of the front wheel(s) of the scooter.

This parameter is selected by the manufacturer depending on the type, age category and general purpose of the scooter. If we compare similar models with different wheel diameters, then it is worth considering that the larger the wheels, the better they work on the bumps in the road, and the higher the cross-country ability. And small wheels, in turn, are great for smooth asphalt and dynamic driving, they easily accelerate and allow you to make sharp turns.

Rear wheel(s) size

The diameter of the rear wheel(s) of the scooter. See "Front wheel diameter" for details on the value of this parameter.

Wheel rigidity

The rigidity of the wheels supplied in the scooter

The higher the number given in this parameter, the harder materials are used in the design of the wheels and the stiffer they are. Stiff wheels easier roll on different surfaces, it is easier to accelerate on them, they allow you to more accurately feel the surface under your feet and do not wear out as quickly as soft ones; on the other hand, these wheels have less traction, are more prone to vibrations and bumps, and require extra care when cornering. Therefore, wheels with high rigidity are typical mainly for professional models, and soft options are recommended for beginner riders.

Note that most scooters allow wheel replacement; this procedure is mandatory from time to time since the wheels tend to wear out. However, if necessary, you can also change a kit that is quite suitable for riding — to a harder one, or vice versa, a softer one

— 82A. Wheels with a hardness of 82A are optimal for urban scooters. This level of stiffness provides the wheels with good strength, while the wheels tenaciously contact the rolling surface. Such scooters are poorly suited for stunt riding.

— 84A. Wheels with a hardness of 84A are considered universal. These can be found both in city scooters and models for stunt riding. Rigidity at the level of 84A gives the wheels a good level of strength. Such scooters are still able to "softly" contact with the surface of the roll, but the rider will al...ready feel "hard feedback" when hitting bumps.

— 85A Wheels with a hardness of 85A are more related to stunt scooters. This level of rigidity provides the wheels with a good level of strength, but due to the increased rigidity, the soft contact of the wheels with the rolling surface is lost. If the scooter does not have suspension, the stiffness of the wheels will recoil into the platform and steering rack when hitting bumps.

— 86A. Wheels with a hardness of 86A are used in scooters for sports and stunt riding. Rigidity at the level of 86A is considered increased. Scooters with such wheels are usually designed for fairly high loads. Such wheels transmit impact and vibration to the scooter. Scooters without their shock absorption make riding on such hard wheels less comfortable. But at the same time, as the strength characteristics of the wheels increase, the chassis becomes more reliable and durable.

— 88A. Wheels with a hardness of 88A are found in stunt scooters. They are distinguished by increased strength characteristics. Due to the high rigidity of the wheels, they can easily withstand driving on any type of rolling surface. On the other hand, riding on 88A wheels provides very strong feedback to the platform and steering column. Such wheels are recommended for scooters with a built-in shock absorption system.

Bearing

Bearings that the scooter is equipped with. This paragraph usually indicates not the model/brand, but the class of bearings according to the ABEC standard. Standard options for modern scooters are ABEC 5, ABEC 7, and ABEC 9 ; the higher the number, the higher the quality and accuracy of the part.

There is an opinion that better bearings allow you to accelerate better and go faster. This is partly true, but acceleration and speed are highly dependent on a number of other points — the size and material of the wheels, the weight of the scooter, etc. So models with bearings of the same class can differ markedly in speed characteristics. But what this indicator unambiguously affects is durability and price: high accuracy affects the cost, but such bearings last longer and carry loads better.

Also note that for relatively simple use, ABEC 5 class bearings are quite enough. It makes sense to specifically look for a model with ABEC 7 or ABEC 9 only if you need a scooter for advanced stunts or professional high-speed riding. However, if the selected model has high-quality bearings, it will not be worse from them anyway.

Max. height

The maximum height to which the height-adjustable handlebar can be set (or just the height of the handlebar in the working position, if height adjustment is not provided).

The height of the handlebars should be such that the rider can stand on the deck straight, without bending his back, and hold on to the handles with slightly bent arms. At the same time, there is no unambiguous relationship between this parameter and the height of the rider. So the perfect option to determine the optimal height is to try it yourself, and then choose a scooter based on the result.

Deck size

Scooter deck size. This item can indicate both the length and width or only one size — most often this is the length.

In general, this parameter is secondary: manufacturers choose the size of the deck depending on the type, age category, general specialization and other features of the scooter. Legroom, usually, is guaranteed to be enough on the deck. We only note that shorter decks are more agile, and longer ones are stable on the course.
iTrike SR 2-053-4 often compared
Explore Stunt Step often compared