USA
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Panasonic AG-CX350 vs Sony PXW-Z150

Add to comparison
Panasonic AG-CX350
Sony PXW-Z150
Panasonic AG-CX350Sony PXW-Z150
Compare prices 11Compare prices 2
TOP sellers
Main
Support for live broadcasts via a Wi-Fi adapter or through wired connections to a transmitting terminal.
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor size1"1"
Number of megapixels1520
Effective megapixels14.2
Camera lens
Focal length (35mm equivalent)25 – 490 mm29 – 348 mm
Aperturef/2.8 – f/4.5f/2.8 – f/4.5
Optical zoom20 х12 х
Digital zoom32 х48 х
Image stabilizationopticaloptical
Filter diameter67 mm62 mm
Manual focus
Video shooting
Video resolution3840x2160 px3840x2160 px
Frame frequency60 fps120 fps
Recording formatsMOV, H.265, AVCHDXAVC, Long, GOP, MPEG2, AVCHD
Video recording speed
400 Mbps, 200 Mbps, 150 Mbps, 100 Mbps /50Mbps, 25Mbps, 21Mbps, 17Mbps,/
100 Mbps, 60 Mbps, 50 Mbps, 35 Mbps /24 Mbps, 17 Mbps, 9 Mbps, 3 Mbps/
Minimum illuminance1.7 lux
Shutter speed1/2 – 1/10000 с1/6 – 1/10000 с
White balanceauto, indoor, outdoor
Sound recording
48 kHz/24 bit /2 channels/
Screen
Screen size3.5 "3.5 "
Screen resolution1620 K pixels1550 K pixels
Touch screen
Features
Features
viewfinder
backlight lamp
hot shoe
built-in speaker
 
 
detachable microphone
viewfinder /0.39″ OLED, 1.44 Мп/
 
hot shoe
built-in speaker
Wi-Fi module
NFC
detachable microphone
Memory and sockets
Memory card supportSDXC, SDHCMS, SD, SDHC, SDXC
Memory card slots22
Connectors
USB
HDMI
 
AV output
microphone input
XLR microphone input
headphone jack
XLR headphone jack
USB
HDMI /Type A/
SDI
AV output
 
XLR microphone input /2/
headphone jack
 
Battery
Battery typeAG-VBR59NP-F770
Battery capacity5900 mAh4400 mAh
Battery life4.33 h
General
Remote control
 /RMT-845/
Dimensions (WxHxD)173x180x311 mm
171.3x187.8x371.3 mm /with protruding parts/
Weight
2300 g /with visor, battery and microphone holder/
1895 g /body only/
Color
Added to E-Catalogmay 2019december 2016

Number of megapixels

The total number of individual photosensitive points (pixels) provided in the design of the sensor (1 megapixel corresponds to a million pixels). This parameter takes into account both those points on which the light falls, and service points that are not directly involved in the construction of the image. Therefore, in modern video cameras, it is more of a reference than practically significant; the actual image quality depends primarily on the number of effective megapixels (see below).

Effective megapixels

The number of light sensitive pixels directly involved in the construction of the image. These are the dots on which the “image” projected by the lens onto the matrix falls. In addition to them, there are also service pixels that are not illuminated during camera operation — they provide auxiliary information necessary for processing the resulting image. Also, when calculating effective megapixels, the reserve area required for electronic stabilization is usually not taken into account (see "Image Stabilization").

The value of the number of effective pixels for different modes of operation of the camcorder will also be different. For example, when recording video, many cameras use multiple pixels to build a single dot on the image; this is due to the fact that the sensor resolutions significantly exceed those required for video shooting (for example, the Full HD standard technically corresponds to only 2.07 megapixels). As a result, the image quality depends more on the sensor size (see above) than on the resolution. And among sensors of the same size, high resolution allows user to get better colour rendering and higher clarity (however, not always — a lot also depends on the peculiarities of image processing). If we are talking about photography, then more megapixels means a higher resolution of the resulting image, but the quality of such a picture can be relatively low due to the increased noise level and low sensitivity of each individual pixel.

Focal length (35mm equivalent)

Focal length of a standard video camera lens in terms of a 35 mm full-frame sensor. This parameter is also called the "equivalent focal length" — EFL.

The focal length itself is the distance from the optical centre of the lens (when focus to infinity) to the sensor, at which the sharpest image is obtained on the sensor. It is one of the key characteristics of any lens, because. determines the viewing angles, the degree of approximation and, accordingly, the specifics of the use of optics. At the same time, it is impossible to compare different options in terms of the actual focal length: the laws of physics are such that with different sizes of sensors, the same focal length will give different viewing angles. Therefore, EFL was adopted as a universal characteristic and criterion for comparison. It can be described as the focal length that a 35mm lens with the same viewing angles would have.

The larger the focal length, the narrower the viewing angle will be and the higher the degree of approximation of the visible scene. Optics with EFL up to 18 mm belongs to the class of ultra wide-angle ("fisheye") and is used primarily to create artistic effects. Distances up to 40 mm correspond to "wide angles", 50 mm gives the same degree of approximation as that of the naked eye, the range of 70-100 mm is considered optimal for portrait shooting, and large values allow the use of optics already as a telephoto lens. Knowing these provisions, one can approximately...evaluate the capabilities of the lens and its suitability for certain tasks; there are more detailed recommendations, they are described in special sources.

Also note that modern video cameras are usually equipped with lenses with a variable focal length (zoom), which allows you to change the degree of approximation and viewing angle; see "Optical Zoom" for details.

Optical zoom

The degree (multiplicity) of image magnification provided by the operation of the lens system in the lens itself, without additional digital processing (see "Digital zoom"). Optical zoom involves changing the focal length (see above): the longer the focal length, the smaller the viewing angle and the larger the objects visible in the frame. And the zoom multiplicity corresponds to the ratio between the maximum and minimum value of this distance. For example, in a 24 – 120 mm system, this parameter will be 120/24 = 5x. However, it is not always appropriate to choose a high zoom camcorder.

The advantage of optical zoom over digital zoom is, first of all, high image quality: regardless of the degree of zoom, the camera uses the entire effective area of the sensor. At the same time, zoom indicators can reach several tens of times, which is more than enough for camcorders of any class. Therefore, this format is the main one today; it is not used only in some models of pocket cameras (see "Features"), where it is not possible to install a large lens with a zoom lens.

For modern models, the value of this parameter at the level of 10 – 12x is considered standard.

Digital zoom

The degree (multiplicity) of zoom provided by the camcorders due to software methods, without changing the focal length of the optics (see "Optical zoom"). The key principle of such an zoom is that part of the image from the sensor is "stretched" to the entire frame. This somewhat worsens the “picture” — after all, not all effective pixels take part in its formation; and the higher the zoom, the worse the quality becomes. On the other hand, this method does not depend on the specifications of the lens and works even with the simplest lenses that do not have zoom lenses, and it is much easier to achieve high magnification than with the optical method.

In modern camcorders, there are two options for using digital zoom. So, among pocket devices (see "Features"), it may be the only available option — not all of them are equipped with zoom lenses. And in full-size models, digital zoom usually complements optical zoom and turns on after the lens reaches the limit of its capabilities.

Note that when shooting 3D (see above), this feature may not be available, and in professional models it is often not used at all.

Filter diameter

The diameter of the mount designed to install an additional filter on a regular camera lens. Such filters can have different types and purposes: UV filtering, colour correction, polarization, artistic effects, etc.; to select them for a specific camera model, you need to know the diameter of the mount.

Frame frequency

The highest frame rate provided by the camera when shooting video. The minimum frequency for normal viewing is the classic 24 fps used in cinema. At the same time, most modern video cameras are capable of providing up to 50 – 60 fps, and even higher frequencies can be used for the slow motion effect.

In fact, this indicator is important primarily when shooting dynamic scenes. The higher the frame rate, the smoother the fast motion will look in the frame, the less jerky it will be and the more pleasant the overall impression of the image will be. The reverse side of this is an increase in the size of recorded files (all other things being equal). Therefore, the frame rate can be made adjustable so that the operator can choose the best option for a particular situation.

Recording formats

Video file formats that the camera can use to store recorded footage. If you want to view these materials using a separate device (player, media centre, etc.), you should make sure that this player supports the appropriate formats, otherwise conversion may be necessary.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.
Panasonic AG-CX350 often compared
Sony PXW-Z150 often compared