Dark mode
USA
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Canon EOS C200 vs Canon EOS C500

Add to comparison
Canon EOS C200
Canon EOS C500
Canon EOS C200Canon EOS C500
Compare prices 3Compare prices 4
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor sizeAPS-CAPS-C
Number of megapixels9.849.84
Effective megapixels8.858.85
Camera lens
Interchangeable lens
Bayonet (mount)Canon EFCanon EF
Manual focus
Video shooting
Video resolution4096x2160 px4096x2160 px
Frame frequency50 fps120 fps
Recording formatsCinema RAW Light, MP4, XF-AVC
Video recording speed24 Mbps, 17 Mbps, 7 Mbps50 Mbps, 35 Mbps, 25 Mbps
Minimum illuminance0.25 lux0.25 lux
Shutter speed1/3 — 1/2000 с1/3 — 1/2000 с
White balanceauto, Kelvin settings (range: 2000K to 15000K)auto, daylight, incandescent, kelvin
Pre-recording (Pre-Rec)
Sound recordingPCM 16bit (2ch, 48kHz)PCM 16bit (2ch, 48kHz)
Photo
Number of megapixels2.07
Max. photo size1920x1080 px
Picture while shooting
Screen
Screen size4 "4 "
Screen resolution1230 K pixels1230 K pixels
Touch screen
Features
Features
viewfinder
hot shoe
detachable microphone
viewfinder
hot shoe
detachable microphone
Memory and sockets
Memory card supportSD, SDHCSD, SDHC, Compact Flash
Memory card slots22
Connectors
USB
HDMI
 
AV output
microphone input
XLR microphone input
headphone jack
 
HDMI
SDI
 
microphone input
XLR microphone input
headphone jack
Battery
Battery typeВР-A30BP-955
Battery capacity3100 mAh4900 mAh
Battery life2 h1.3 h
General
Remote control
Dimensions (WxHxD)144x153x179 mm160x179x171 mm
Weight1430 g1820 g
Color
Added to E-Catalogfebruary 2019april 2013

Frame frequency

The highest frame rate provided by the camera when shooting video. The minimum frequency for normal viewing is the classic 24 fps used in cinema. At the same time, most modern video cameras are capable of providing up to 50 – 60 fps, and even higher frequencies can be used for the slow motion effect.

In fact, this indicator is important primarily when shooting dynamic scenes. The higher the frame rate, the smoother the fast motion will look in the frame, the less jerky it will be and the more pleasant the overall impression of the image will be. The reverse side of this is an increase in the size of recorded files (all other things being equal). Therefore, the frame rate can be made adjustable so that the operator can choose the best option for a particular situation.

Recording formats

Video file formats that the camera can use to store recorded footage. If you want to view these materials using a separate device (player, media centre, etc.), you should make sure that this player supports the appropriate formats, otherwise conversion may be necessary.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.

White balance

Presets and white balance adjustment modes provided by the camera.

White balance is a characteristic that describes the qualities of the lighting of the scene and the distortion that this lighting introduces into the colours perceived by the camera. Its used because modern digital sensors are unable to independently adjust to different light sources, as the human eye does. In fact, this means that the same object shot under lighting with different colour temperatures (for example, under a “warm” incandescent lamp and a “cold” fluorescent lamp) will look different without adjustment. To avoid this, the white balance setting is applied.

The main options for such a setting used in modern cameras are as follows:

— Auto. In accordance with the name, in this mode, the camera electronics independently evaluates the specifics of the illumination of the scene being shot and makes appropriate corrections to the colour reproduction. This adjustment is the most convenient for the operator, because. does not require any additional actions from him — everything is done by automation. At the same time, no such adjustment system is perfect, and does not always provide 100% white balance for the current situation. Therefore, even in the simplest models like pocket ones (see "Features"), this option is rarely the only one, not to mention professional equipment.

— Presets. The ability to select white balance from several options that correspond to...standard shooting conditions — for example, “sunny day”, “cloudy”, “fluorescent lamp”, “incandescent lamp”, etc. Such a system is quite simple even for inexperienced users and at the same time quite reliable and versatile, although its specific capabilities directly depend on the number of presets.

— Manual. Manual white balance setting assumes that the operator himself “tells” the camera which object to consider pure white — based on this, the electronics calculate the lighting characteristics (unlike automatic mode, when the reference object is also determined without user involvement). The easiest way to do this is to use a regular sheet of paper, but the procedure also works with neutral grey objects. Manual mode allows you to very accurately set the white balance for a particular scene, but it requires some time and appropriate skills — and therefore is used mainly in professional camcorders.

— Temperature control. This function allows you to set a specific value for the colour temperature of the light source (in kelvins) — it is this temperature that will correspond to the white balance when shooting. This setup format is faster and more convenient than manual setup, but is not widely used. This is due to the fact that it is well suited only for studio conditions, where the characteristics of each light source are precisely known — in other cases, manual adjustment is usually more reliable.

Number of megapixels

Effective resolution of the camera sensor when working in the photo shooting mode; in other words, the number of points or pixels that are directly involved in this mode (1 megapixel corresponds to a million points). The maximum size of a photo (see below) directly depends on this parameter: in fact, the number of megapixels corresponds to the size of the image vertically and horizontally, multiplied by each other. For example, a resolution of 3264x2456 corresponds to 8,016,384 pixels, or approximately 8.02 megapixels.

As with traditional digital photography, numerous megapixels allows you to get more detailed images with better visibility of fine details. However, as the resolution increases with the same sensor size, the size of each individual pixel and the amount of light falling on it decrease, which increases the likelihood of noise and generally reduces the quality of the picture.

Max. photo size

The largest photo size that can be taken with the camera. It is customary to designate it in points (pixels), with two numbers corresponding to the horizontal and vertical dimensions — for example, 2048x1536. This parameter directly determines the effective resolution of the sensor when photographing; see "Number of Megapixels" above for details.

Picture while shooting

Possibility of taking photos during video recording. Usually it is implemented by a separate button, when pressed, the camera captures the visible image as a photo without interrupting video recording.

Of course, modern technologies allow you to save individual frames from an already finished video, but simultaneous photography compares favorably in two ways. Firstly, the resolution of the “picture” in photo mode is often higher than in video recording, and secondly, the procedure of processing a photo differs from the method for processing video frames and allows you to get a better image. So if you need the ability to highlight individual moments in the filmed events, it makes sense to choose a model with this function.

Touch screen

The video camera has a touch screen — a display that responds to the user's touch. Such a screen greatly expands the possibilities for controlling the camera and can significantly simplify it. For example, working with the menu is much easier by pressing your finger directly on the lines on the screen; in addition, many models with this equipment allow you to select an object for focus by touching the image on the screen.

Memory card support

Memory cards types supported by the camcorder. In modern devices, there may be such options:

— SD (SDHC, SDXC). The most popular memory card format for various electronics, including camcorders. The original SD standard allows you to create storages up to 4 GB, the next SDHC — up to 32 GB, and its successor SDXC — up to 2 TB. Reading devices under a certain standard are compatible with earlier versions of cards, but not vice versa: for example, a camera with SD HC support will be able to work with regular SD, but not with SD XC. These types of cards may correspond to different speed classes. These classes are described in more detail in special sources, but here we note that class 4 is considered the minimum suitable option for recording Full HD video. And anyway, the speed of the card should not be lower than the video recording speed provided by the video camera (see above) — otherwise the device just can't function properly. It is also worth mentioning that the rather large size of SD cards (32x24 mm) makes it difficult to use them in portable devices; to solve the problem, the microSD standard appeared (see below).

— microSD. in internal design such cards are completely similar to the SD cards described above and differ from them only in their reduced size — 15x11 mm. This allows them to be used even in the most compact modern devices, however, with equal volume, such cards are more expensive than their full-size counterparts, and the size of m...ost modern camcorders allow the use of conventional SD. Therefore, this option is found only where compact size is crucial — primarily among pocket models (see "Features"). microSD cards also have HC and XC modifications and are divided into speed classes; they can be used in SD card readers using the simplest adapters, and sometimes without them at all.

— MMC. A standard similar in many respects to SD — up to the fact that such cards are fully compatible with SD card readers in terms of size and contacts. MMC capacity — up to 64 GB, however, they work a little slower. Because of this, this standard is practically not used “in its pure form”, its support is usually combined with support for the more popular SD.

— MS (Memory Stick). The standard created by Sony is used mainly in the technology of this company, including camcorders. There are many varieties of such media, and not all of them are mutually compatible. MS cards are quite expensive and not as versatile as SD cards, so many cameras that support them can also work with SD.

— CompactFlash (CF). A standard originally created for professional photography; among video cameras, it is also used in professional models (see "Features"). CF cards have a good capacity (up to 128 GB) and high speed; their main disadvantage is their large size, which limits their use in compact technology. There are two CF formats — Type I and Type II; cards of the second type are faster, but do not fit the card readers of the first type due to their greater thickness.

— SxS. The standard, created by Sony and SanDisk specifically for professional camcorders and film cameras, is used in top-class devices. Such cards have high speed of work due to the fact that they use the connection according to the PCI Express standard; and their shape allows to install them directly into the ExpressCard slot on a computer or laptop. The maximum capacity of such media is 32 GB.

— P2. A company standard created by Panasonic exclusively for professional video recording. Inside, the P2 card is an array of 4 SD storages, and externally it is identical to a PCMCIA computer card and can be installed directly into the appropriate slot. The volume of such media is up to 64 GB.
Canon EOS C200 often compared
Canon EOS C500 often compared