Dark mode
USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Bench Drills

Comparison WinTech WTB-16/700 vs Sturm BD7050

Add to comparison
WinTech WTB-16/700
Sturm BD7050
WinTech WTB-16/700Sturm BD7050
Outdated Product
from $209.12 up to $232.00
Outdated Product
TOP sellers
Typeverticalvertical
Transmissionbeltbelt
Controlmanualmanual
Specs
Power consumption700 W500 W
Number of speeds1612
Min. rotational speed180 rpm220 rpm
Max. rotational speed2770 rpm2600 rpm
Max. spindle travel80 mm80 mm
Work table dimensions290x290 mm290x290 mm
Chuck
Chuck typeMorse taper and keykey
Morse taperMK2
Chuck diameter16 mm16 mm
Features
Functions
laser pointer
base incline
 
base incline
Power supply
Power sourcemainsmains
Supply voltage230 V230 V
More features
Weight42 kg41.3 kg
Added to E-Catalogoctober 2017june 2016

Power consumption

Rated power consumption of the machine. In this case, the total power consumption of the machine is indicated, which, as a rule, is equal to the power of the main engine responsible for rotating the spindle. The design may also include other motors - for example, for automatic feeding (see “Control”) or coolant pumping (see “Functions”) - they are also taken into account. The “gluttony” of such motors is relatively low for low-power machines, and the power of the main engine is one of the main characteristics for any machine: it determines the class of the unit and its general capabilities.

A more powerful motor allows you to drill at higher speeds (which reduces drilling time) and/or with higher torque (important for hard materials and large size drills/bits). Accordingly, the more powerful the machine, the more advanced, as a rule, it is, the more opportunities are available when working with it. The downside of this is that with increasing power, the dimensions, weight, price and, accordingly, energy consumption of the unit increase. Therefore, you need to choose based on this indicator taking into account the work for which the machine is purchased. So, for simple tasks (for example, a home workshop, where you plan to work only from time to time), a power of about 300 - 600 W is quite sufficient, for daily use in relatively “light” production (for example, furniture) - from 600 W to 1 kW, but for large metal parts, models fro...m 1 kW and above are recommended. We also note that, in addition to power, you should also focus on the maximum drilling size (see below).

Number of speeds

The number of spindle speeds provided in the design of the machine.

The more speeds(with the same difference between the minimum and maximum number of revolutions, see below) — the more options the operator has to choose the operating mode and the more accurately the machine can be adjusted to the specifics of a particular task. However the specific values of fixed speeds, even for similar models, may be different; but most of the time the difference is not significant. In addition, multi-speed machines can be supplemented with smooth speed control (see "Functions"), which allows you to fine-tune the operating mode even more precisely.

Note that switching speeds can be done in different ways: in some models this is done literally at the touch of a button, in others you need to delve into the gearbox or belt drive.

Min. rotational speed

The lowest spindle speed provided by the drilling machine.

Note that this parameter is indicated only for models with more than one speed (see "Number of speeds") and/or speed control (see "Functions") — that is, if the speed can be changed one way or another. See “Maximum number of revolutions"; here we note that the ability to work at low speeds in some cases is critical — for example, when threading. Accordingly, the lower the minimum speed, the better the machine is suitable for such work, other things being equal. The most "slow" modern models are able to rotate at a speed of 30 – 40 rpm.

Max. rotational speed

The highest spindle speedprovided by a drilling machine; for models with only one speed, it is also indicated in this paragraph.

For the same engine power (see above), high RPM provides good performance, but torque is reduced; at lower speeds, on the contrary, the pulling force is increased, allowing you to “bite” into stubborn materials and make it easier to work with large diameter drills. Specific recommendations for optimal speeds depending on the type of material and drilling diameter can be found in special sources. At the same time, we note that a high-speed machine will not necessarily be “weak” in terms of torque — after all, many units allow you to reduce the rotation speed. However, efficient operation at high speeds still requires a fairly powerful engine, which accordingly affects the cost of the unit. Accordingly, it makes sense to look for a “fast” machine if you plan to work a lot with relatively soft materials, such as wood. But for metal, stone, etc. it is better to choose a relatively "slow" unit.

Chuck type

The type of chuck — a clamp for installing drills and other working nozzles — used in the machine.

Key. Chuck opened and closed with a special key. Also known as "gear" or "ring gear" because the wrench works like a gear. It is used to secure drills with a cylindrical shank; for this, the design has cams (usually three) that converge when closing and diverging to remove the drill. The cam clamp itself is quite versatile and is able to work with any drill or other attachment that has a round shank (regardless of its additional features). For example, even nozzles with a Weldon shank are sometimes put in such a cartridge (see below). Specifically, the key cartridge is considered somewhat more reliable than the quick-clamping one similar in principle; its main drawback lies directly in the use of the key, which can be lost. In addition, the replacement itself takes a lot of time.

Quick release. A chuck for cylindrical shanks, the design of the clamp is completely similar to the key (see above). The main difference is that the keyless chuck is opened and closed by hand, without the use of any special tools. Due to this, changing drills takes much less time (hence the name), and in general, working with such a cartridge is easier than with a key one. It is considered the best choice for those cases where you need to change drills frequently. The disadvan...tage of keyless chucks is considered by some to be less reliable than key chucks; however, this may turn out to be critical only at very high loads, and for normal use, the capabilities of such a fastening are quite enough.

— Morse taper. Morse taper is a specific type of shank used in drills and other similar bits. Such a shank, in accordance with the name, has a conical shape — the socket in the cartridge is designed for it. At the end of the shank, there is most often a foot — a flat ledge, which, when installed, is fixed in the groove of the cartridge and does not allow the drill to turn. However, there are other options for retainers — for example, with a thread, when a special rod is screwed into the end of the cone during installation. In order to select compatible drills, it is imperative to know the design features of a particular Morse taper chuck. Also note that such fasteners are available in several standard sizes (see "Morse Taper").

— Weldon. The Weldon clamping system features a cylindrical shank with a flat, a small flat notch on one side. The chuck has a clamping screw, which, when tightened, rests against the flat and fixes the drill in the socket. A rather exotic type of fastening, which has not received much distribution in the post-Soviet space. This is partly due to the fact that the Weldon drill can be clamped in a regular shank chuck without much difficulty (although this is not particularly recommended, as it can lead to imbalance at high speeds). This type of chuck is mainly used in magnetic machines (see "Type") — and then most often in combination with another, more common type of fastening (for example, quick-clamping).

— collet. A cartridge that uses the same working principle as an automatic pencil. The role of the clamp is played by a round sleeve, divided into several springy petals; in the working position, they are compressed and fix the drill, and to open it, you need to pull the chuck casing up, and the petals will disperse. This way of working is not reliable enough for full-size drilling machines, but it is optimally suited for high-precision units using small diameter drills (up to 4 – 5 mm).

Note that several chucks can be supplied with a drilling machine at once, including those for different types of shanks (for example, Morse taper and key). The latter significantly expands the range of working nozzles available for the unit. At the same time, a specific combination of fasteners can be practically any — except that the key and keyless chuck are not supplied in one set, because. they are designed for the same type of shanks.

Morse taper

The size of the Morse taper chuck (see Chuck Type) that the drill is equipped with.

Morse tapers are available in several standard sizes. The most popular standard provides marking with the letters MK and a number — for example, MK2. The larger the number in the designation, the larger the diameter of the cone and, accordingly, the thicker the drills in which it is used. In modern drilling machines, chucks with sizes from MK1 to MK4 are usually used. But in fact, this parameter is necessary primarily for the selection of compatible drills.

Functions

Reverse. The possibility of rotating the spindle in the opposite direction — to "unscrew" the drill from the material. The main function of this function is to free the tool stuck in the workpiece. In addition, reverse can be useful for some specific types of work, such as threading (in fact, almost all machines with reverse allow this use).

— Adjustment of frequency of rotation. In this case, the ability to smoothly change the speed of rotation of the spindle is implied. This allows you to fine-tune the speed much more precisely than by choosing one of the fixed speeds (see "Number of speeds"). In this case, both methods of adjustment can be provided in the same machine. Anyway, models with smooth adjustment are considered more advanced than units without it.

— Auto speed control. An automatic system that regulates the power supplied to the spindle depending on the load on the drill — in such a way that the rotation speed of the tool remains unchanged: at high loads, the power increases, at low loads it decreases. A constant rotation speed has a positive effect on both the quality of processing and the service life of the drills and the machine itself.

— Brushless motor. The brushless type electric motor does not have carbon brushes. Such units are much more complicated and more expensive than classic collector motors, but they have a number of important advantages over them. These are, in particular, high ef...ficiency, minimal heating during operation, durability, very low noise level, as well as an almost zero probability of sparks, which allows you to work safely in conditions of increased fire danger.

— Backlight. The presence in the machine of its own lighting system — in the form of a lamp aimed at the place of work. This function makes the unit independent of external lighting and allows you to work comfortably even in low light (up to complete darkness). And in the daytime, the light can be obscured by surrounding objects, or even by the machine itself; in this case, the backlight will also be useful.

— Laser marker. A laser marker that plays the role of a “target indicator”: a mark from it shows a point on the workpiece that the drill touches if it is lowered right now. This feature makes it much easier to point the tool at the desired point.

— Digital display. Own display, which can display various numbers and special characters. Usually this is a fairly simple screen for 3-4 digits, however, even such a screen is more informative than indicator lights. For example, the display can show the exact spindle speed; and in general, this function makes the management more convenient and intuitive.

— Coolant supply (coolant). A system that allows you to supply cutting fluid (coolant) to the place of work. This function is especially important in “heavy” work, with intensive processing of hard materials or delicate parts: by reducing heat and friction, coolant prevents deformation of workpieces, reduces the likelihood of defects and overall tool wear. In addition, the coolant can perform other special functions, such as anti-corrosion treatment. Note that the design of the supply system can be different — from the simplest tank above the spindle, from which coolant flows by gravity, to a separate pump with its own engine. This point before buying needs to be specified separately.
WinTech WTB-16/700 often compared
Sturm BD7050 often compared