Dark mode
USA
Catalog   /   Tools & Gardening   /   Measuring tools   /   Laser Measuring Tools

Comparison Bosch GCL 2-15 G Professional 0601066J00 vs Bosch PCL 10 0603008120

Add to comparison
Bosch GCL 2-15 G Professional 0601066J00
Bosch PCL 10 0603008120
Bosch GCL 2-15 G Professional 0601066J00Bosch PCL 10 0603008120
Compare prices 1
from $69.80 up to $102.52
Outdated Product
User reviews
0
0
0
1
TOP sellers
Main
Green laser. Zenith and nadir. Holder. Case. Target.
Model 0601066J00 comes without tripod, model 0601066J0D comes with BT150 tripod
The PCL 10 comes without a tripod, while the PCL 10 Set comes with a tripod
Typelaser levellaser level
Specs
Measurement range15 m10 m
Accuracy0.3 mm/m0.5 mm/m
Self-leveling angle4 °4 °
Leveling time4 с4 с
Operating temperature-10 – 50 °C5 – 40 °C
Tripod thread1/4" and 5/8"1/4"
Auto power off
Auto power off2 min
Laser characteristics
Diode emission540 nm635 nm
Laser colourgreen / redred
Laser class22
Vertical projections11
Horizontal projections11
Point projections2
Zenith
Nadir
Features
Compensator locking
General
IP protection rating54
Power source3xAA2хАА
Operating time6 h15 h
In box
holder
case / pouch
non chargeable batteries
target plate
 
case / pouch
non chargeable batteries
 
Dimensions112x55x106 mm108x66х92 mm
Weight490 g360 g
Added to E-Catalogjuly 2017april 2014

Measurement range

The range at which the device remains fully operational without the use of additional receivers (see below); in other words, the radius of its action without auxiliary devices.

In some models, a range may be specified that shows the minimum ( 3 cm, 5 cm) and maximum measurement ranges. But in most cases, only the maximum value is indicated.

The specific meaning of this parameter is determined by the type of instrument (see above). So, for optical levels, the measurement range is the greatest distance at which the operator can normally see the divisions of a standard leveling staff. For laser levels, this parameter determines the distance from the device to the surface on which the mark is projected, at which this projection will be easily visible to the naked eye; and in rangefinders we are talking about the greatest distance that can be measured. Typically, the measurement range is indicated for ideal conditions - in particular, in the absence of impurities in the air; in practice, it may be less due to dust, fog, or vice versa, bright sunlight "overlapping" the mark. At the same time, tools of the same type can be compared according to this characteristic.

Note that it is worth choosing a device according to the range of action, taking into account the features of the tasks that are planned to be solved with its help: after all, a large measurement range usually significa...ntly affects the dimensions, weight, power consumption and price, but it is far from always required. For example, it hardly makes sense to look for a powerful laser level at 30-40 m if you need a device for finishing work in standard apartments.

Accuracy

Accuracy is described as the maximum deviation from the true value of the measured parameter, which the device can give if all the rules for its operation and the corresponding measurements are observed. In both rangefinders and levels, this parameter is usually designated for a certain distance — for example, 3 mm at 30 m; but even for one manufacturer, these "control" distances may be different. Therefore, in our catalog, the accuracy of all devices is recalculated for 1 m distance; with such a record, for the example above, it will be 3/30 \u003d 0.1 mm / m. This makes it easier to compare different models with each other.

It is also worth mentioning that the meaning of the "accuracy" parameter for different types of measuring instruments (see "Type") will be different. For optical levels, it is described in the "SKP" paragraph above. For laser levels of all types, accuracy is the maximum deviation of the mark from the true horizontal (or vertical, if such a function is provided), and for the horizontal, we can talk about both moving the mark up / down and turning it. In rangefinders, this characteristic describes the maximum difference (both in "plus" and "minus") between the readings of the device and the actual distance to the object.

Anyway, the smaller the error, the better; on the other hand, accuracy significantly affects the price of the device. Therefore, it is necessary to choose a specific model for this parameter, taking into account the...specifics of the planned work. For example, for a relatively simple repair in a residential apartment, a high-precision tool is unlikely to be required; and recommendations for more complex tasks can be found in specialized sources, ranging from expert advice to official instructions.

Operating temperature

The temperature range at which the device is guaranteed to work for a sufficiently long time without failures, breakdowns and exceeding the measurement error specified in the characteristics. Note that we are talking primarily about the temperature of the device case, and it depends not only on the ambient temperature — for example, a tool left in the sun can overheat even in fairly cool weather.

In general, you should pay attention to this parameter when you are looking for a model for working outdoors, in unheated rooms and other places with conditions that are significantly different from indoor ones; in the first case, it makes sense to also make sure that there is dust and water protection (see "Protection class"). On the other hand, even relatively simple and "myopic" levels / rangefinders usually tolerate both heat and cold quite well.

Tripod thread

The standard size of the thread used to mount the level/rangefinder on a tripod (if available). This option can be useful if you already have a surveying tripod that you want to use with the tool.

The most popular options in modern devices are 1/4" and 5/8". It is worth noting that 1/4" is a standard size for photographic equipment - accordingly, levels with such a thread can be installed even on ordinary photographic tripods.

Auto power off

The ability to automatically turn off the device after a certain time. This function is found in those types of measuring instruments that require power for operation — first of all, we are talking about laser rangefinders, however, this list may also include levels (see "Type"), both laser and optical with additional digital modules . The main purpose of auto-shutdown is to save electricity: after all, almost all such devices have autonomous power sources (see "Power"), the charge of which is not infinite. Forgetting to turn off the device, you may encounter an unpleasant situation: the batteries are dead, but there are no fresh ones at hand; auto-off prevents these situations and generally increases the operating time without changing batteries or recharging the battery. In addition, this feature is also useful from a safety point of view: automatic laser shutdown reduces the likelihood that its beam will accidentally fall into the eyes of someone around (including a forgetful operator).

In some models, auto-shutdown works on the entire electronics, in others it may be possible to turn off the laser first (as the most energy-intensive and unsafe part), and only after a while — all other electronic circuits.

Auto power off

The time after which the device turns off by itself completely if the user does not perform any action.

See above for more information on auto power off; and his time has a double meaning. On the one hand, if this time is short, then the idle time of the device will be minimal, which helps to save energy. On the other hand, too frequent auto-shutdown (with subsequent switching on for work) is also undesirable — it increases the wear of components and reduces the resource, and it is not always convenient for the user. So manufacturers choose the time, taking into account the balance between these moments, as well as the general class and purpose of the device. So, in some rangefinders, this indicator does not even reach a minute, although in most such devices it is in the range from 3 to 8 minutes; and in some professional devices (primarily levels), the auto-off time can be 30 minutes or more (up to 3 hours).

Diode emission

The wavelength of the radiation emitted by the LED of the level or rangefinder; this parameter determines primarily the colour of the laser beam. The most widespread in modern models are LEDs with a wavelength of about 635 nm — at a relatively low cost, they provide bright red radiation, giving a well-visible projection. There are also green lasers, usually at 532 nm — the marks from them are even better visible, but such LEDs are quite expensive and rarely used. And radiation with a wave longer than 780 nm belongs to the infrared spectrum. Such a laser is invisible to the naked eye and is poorly suited for leveling, but it can be used in rangefinders — of course, with a viewfinder (see "Type" for more details).

Laser colour

The color of the laser beam emitted by the device.

Red lasers are the most popular in our time: they are relatively inexpensive, while they are quite effective and functional, and also quite noticeable on most surfaces. In turn, green lasers are better visible to the human eye (with the same emitter power); however, they are noticeably more expensive than red ones, consume more energy and have a shorter service life, and therefore are much less common.

Blue lines are rarely seen in laser instruments. Their competitive advantage over traditional green and red lasers is their high brightness, which ensures excellent visibility of the beams on many surfaces, incl. when doing outdoor work.

In some devices, you can find two types of lasers at once - both red and green. As a rule, these are levels with several projections, where green is used to build planes, and red is used for point projections.

Point projections

The number of individual points projected by the laser tool — rangefinder or level, see "Type" — when working. In the first case, one point projection is standardly provided — more is simply not required to measure distances. In levels, there can be several points, and some models do not have planar projections at all and work only with points. This format may not be as convenient as displaying lines; at the same time, with the same laser power, dot marks shine brighter and are more visible, especially at long distances. In addition, there are certain types of work for which point projection is considered optimal — for example, laying sewers, determining the locations for two holes in opposite walls, etc.
Bosch GCL 2-15 G Professional 0601066J00 often compared
Bosch PCL 10 0603008120 often compared