Dark mode
USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Yamaha PSR-F51 vs Yamaha MX49

Add to comparison
Yamaha PSR-F51
Yamaha MX49
Yamaha PSR-F51Yamaha MX49
Outdated Product
from $495.24 
Outdated Product
TOP sellers
Typesynthesizer (rompler)synthesizer (rompler)
Keys
Number of keys6149
Sizefull sizefull size
Mechanicspassiveactive
Rigidityunweightedsemi-weighted
Specs
Polyphony32 voices128 voices
Built-in timbres120 шт1167 шт
User timbres136 шт
Auto accompaniment
Accompaniment styles114 шт
Tempo change11 – 2805 – 300
Metronome
Built-in compositions
Effects and control
Arpeggiator
Reverberation
Chorus
Transposition
Pitch controller
Modulation controller
Fine tuning
Connectors
Inputs
 
 
 
mini-Jack (3.5 mm)
MIDI in
USB to device (type A)
Connectable pedals2 шт
Outputs
 
 
headphones
USB to host (type B)
MIDI out
headphones
Linear outputs2
In box
In box
music stand
 
 
 
PSU
disc
General
Built-in acoustics5 W
Number of bands1
Displaymonochromemonochrome
Power consumption6 W9 W
Autonomous power supplyaA batteries
Dimensions (WxHxD)940x109x306 mm830x91x298 mm
Weight3.4 kg3.8 kg
Color
Added to E-Catalogaugust 2017october 2016

Number of keys

The greater the number of keys — the wider the range of the instrument, the lower and higher notes you can take on it right during the game, without resorting to tricks like octave shift (see below). By comparison, a full size piano keyboard has 88 keys. However, in synthesizers, such an amount is rare, because. the instrument would have turned out to be too bulky and expensive, and not every musician, even a professional one, needs such an extensive range. Thus, 88-key keyboards are used primarily in high-end workstations (see "Type"). For ordinary synthesizers, the standard is 49, 61 or 76 keys ( there are also options for 73 keys) — this is usually quite enough (while the "golden mean" option is considered to be 61 keys). And small children's models can have 32 keys.

Mechanics

Type of action used in synthesizer keys.

— Passive. The simplest type of mechanics, when each key is, in fact, a “switch” for its note: it only turns the sound on and off, while the volume of this sound does not depend on the strength and intensity of pressing. Passive keyboards usually have unweighted, less often semi-weighted hardness (see below). Their main and, perhaps, the only advantage is their low cost, due to the simplicity of design. At the same time, the capabilities of such tools are very limited, and even when training, it is recommended to use them only at the very initial stages. As a result, passive mechanics are used exclusively in the simplest low-cost-level synthesizers, which are more suitable for the role of a toy for entertainment, rather than a full-fledged instrument.

— Active. A mechanic that provides a relationship between volume and pressing force: the harder the key is pressed, the louder and sharper the sound will be. Most often combined with semi-weighted, occasionally unweighted hardness (see below). Such keys already make it possible to control the dynamics of each note: select its volume "on the fly", highlight accents, use special techniques, etc. This feature is especially important in training, when you need to train to control the effort on each individual finger. Active mechanics are highly recommended even for an inexpensive synthesizer, and for a mid-range instrument it is almost man...datory, as well as for serious learning. At the same time, many models may provide sensitivity adjustment, or even a complete switch to passive mode (for example, to simulate some instruments).

— Hammerhead. The most advanced kind of mechanics. Like the active one, it provides volume control depending on the force of pressing, but it fundamentally differs in response: hammer action is used only in weighted keyboards (see "Rigidity"), and the feeling when playing it is close to playing on a real piano. The degree of approximation, however, can be different — some models are indistinguishable in sensations from the piano, in others the mechanics are simpler. However, anyway, such features are not cheap, despite the fact that the real need for a "piano" response is extremely rare. As a result, hammer action keyboards are found mainly among top-class instruments, mainly workstations (see "Type") with full-size keyboards for 88 keys.

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Polyphony

The polyphony supported by a synthesizer, in other words, is the number of “voices” (tone generators) that can simultaneously sound on it.

This parameter is often described as the number of notes that can be played simultaneously on the keyboard. However, this is not entirely true due to the fact that in many timbres one note can activate several tone generators. As a result, for example, to play a chord of 3 notes in a timbre with 4 tone generators per note, polyphony of at least 3 * 4=12 voices is required. In addition, Auto Accompaniment and Preset Songs (see related sections) also use tone generators, requiring even more voices to work effectively with these features.

The minimum value for a more or less functional modern synthesizer is polyphony for 32 voices — and even then such an instrument can be used mainly for initial training and simple melodies. For a more solid application, it is desirable to have at least 50 – 60 voices, and in professional models (in particular, workstations where you have to deal with several audio tracks at once), there are models with polyphony for 150 tone generators or more.

In general, a more advanced synthesizer is likely to have more extensive polyphony, however, it is only possible to evaluate the class of an instrument by this parameter very approximately — instruments with the same number of voices can differ greatly in level. The only exception to this rule are children's synthesizers (see "T...ype"), which support up to 20 voices.

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

User timbres

The number of memory slots for user tones provided in the synthesizer.

For Voices in general, see “Preset Voices” above. User timbres are sound settings that were not originally provided in the synthesizer's memory and are created by the user according to their preferences. This feature is indispensable in cases where the built-in set of timbres does not contain the necessary options. However, the capabilities of the User Voices may vary from model to model. So, one instrument only allows you to edit and supplement existing timbres (for example, add a “wah-wah” effect to a bass guitar and save such a bunch as a user setting), another makes it possible to set the sound parameters almost manually, and the third even allows you to load timbres through USB (see below).

The more user timbres in the synthesizer, the more personal “instruments” you can register in its memory.

Auto accompaniment

The presence of the auto accompaniment function in the synthesizer.

This function allows the instrument to automatically play an accompaniment melody that you can play along with the main part on the keyboard. At the same time, the left hand of the musician can control the accompaniment: it is enough to take a chord on the left half of the keyboard, and the auto accompaniment will automatically “decompose” it into instrument parts that sound in accompaniment. Thus, the musician turns into a "man-orchestra": one synthesizer can replace the whole ensemble, or at least a solid part of the ensemble. Of course, the sound quality in such models can be different, and not every synthesizer with accompaniment is suitable for an event more serious than a children's party, although there are quite advanced models.

In addition, playing to accompaniment can also be useful for educational purposes: it contributes to the development of general technique, a sense of rhythm, and additional accompaniment is very convenient during improvisation exercises.

It should be taken into account that not only the sound quality, but also the number of accompaniment styles (melodies) can be different; and some models allow you to record your own melodies. See below for more details on these features.

Accompaniment styles

The number of auto accompaniment styles (see above) originally provided in the synthesizer, in other words, the number of accompaniment options available to the user.

The more extensive this set, the higher the probability of finding among these melodies suitable options for a particular case. At the same time, the abundance of styles in itself is not yet a 100% guarantee that among them there will be a suitable one, especially since different synthesizer models can differ markedly in a specific set of melodies. So the list does not hurt to clarify before buying. Also note that the situation can be corrected by user styles (see below) — many synthesizers with auto accompaniment support them.

Tempo change

The range in which you can change the tempo of the programme played by the synthesizer — auto accompaniment, lesson tune (see above), metronome (see below), recorded sample, etc.

Pace is measured in beats per minute. Changing it allows you to adjust the speed of the synthesizer to the specifics of the situation — for example, slightly slow down the tutorial if it is too hard to master at the initial pace. The wider the range of tempo adjustment, the more options the musician has to choose from, especially in the area of very slow and very fast tempos.

Note that the traditional range of musical tempos covers values from 40 beats / min (“grave”, “very slowly”) to 208 beats / min (“prestissimo”, “very fast”), however, in synthesizers it can be more extensive — for example, 30 – 255 bpm.
Yamaha PSR-F51 often compared