USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Amplifiers

Comparison Cambridge Topaz AM5 vs Cambridge Azur 350A

Add to comparison
Cambridge Topaz AM5
Cambridge Azur 350A
Cambridge Topaz AM5Cambridge Azur 350A
from $232.00 up to $300.00
Outdated Product
from $294.00
Outdated Product
TOP sellers
Device typeintegrated amplifierintegrated amplifier
Element basetransistortransistor
Toroidal transformer
Amplifier parameters
Number of channels22
Frequency range
10 – 30000 Hz /-3 дБ/
5 – 50000 Hz /-1 дБ/
Power per channel (8Ω)25 W45 W
Signal to noise ratio82 dB92 dB
Damping factor100
Harmonic distortion
0.015 % /на 1 кГц/
0.02 % /на 1 кГц/
Channel sensitivity / impedance
Line input
32 kOhm
47 kOhm
Connectors
RCA4 pairs6 pairs
For acoustics2 шт4 шт
REC (to recorder)1 pairs1 pairs
On headphones6.35 mm (Jack)
Front panel
 
audio input jack /Aux/
 
indicators
audio input jack /Aux 3.5mm/
headphone output
Features
Adjustments
bass control
treble adjustment
balance adjustment
level adjustment
bass control
treble adjustment
balance adjustment
level adjustment
More features
 
 
additional speaker connect
Bi-Wiring
General
Remote control
PSUinternalinternal
Power consumption180 W320 W
Dimensions (WxDxH)430х340х80 mm430x340x86 mm
Weight5.1 kg6 kg
Color
Added to E-Catalogjanuary 2014january 2014

Frequency range

The range of audio frequencies that the amplifier is capable of handling. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to look for an amplifier with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Power per channel (8Ω)

The nominal sound power output by the amplifier per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when all channels of the amplifier work under load (see "Number of channels"); in the presence of unused channels, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest output signal power at which the amplifier is able to work stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, the audio signal is by definition unstable, and individual level jumps can significantly exceed the rated power. However, it is she who is the main basis for assessing the overall loudness of the sound.

This indicator also determines which speakers can be connected to the amplifier: their rated power should not be lower than that of the amplifier.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, the standard values \u200b\u200bare 8, 6, 4 and 2 Ohms, and power levels are indicated for them.

Signal to noise ratio

In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.

If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.

Damping factor

The damping factor describes the quality of interaction between the amplifier and the speaker system connected to it.

Due to the design features, any speaker is prone to the occurrence of so-called parasitic oscillations — oscillations that continue after the main impulse from the amplifier has ceased (similar to how a string continues to vibrate after a pluck). This phenomenon has a negative effect on sound quality, and manufacturers use various means to reduce it to an absolute minimum; suppression of parasitic oscillations is called damping.

The most effective type of damping is electrical, by reducing the output impedance of the amplifier. The lower this resistance, the better the amplifier keeps the speakers from unnecessary vibrations. To evaluate this effect, they introduced the concept of “damping factor” (damping factor) — the ratio of the load resistance (impedance) to the output resistance of the amplifier. The minimum value of such a coefficient for Hi-Fi class equipment is 20; indicators at the level of 100 – 120 can be called good, and among the Hi-End segment there are numbers of the order of several thousand.

At the same time, it is worth noting that when increasing to three-digit numbers, the original meaning of this parameter is, in fact, lost, and other points appear. The most important of them from a practical point of view is that models with a high damping factor are very demanding on the quality of the connection to t...he speakers — the high resistance of cables and connectors can negate the damping properties of the amplifier itself. There are other nuances associated with this indicator (in particular, recommendations for choosing an amplifier and speakers for each other); they are described in detail in specialized sources.

Harmonic distortion

This indicator describes the amount of non-linear distortion introduced by the amplifier into the processed signal. Such distortions are not necessarily perceived as extraneous noise, but they degrade the quality of the sound anyway — for example, they can make it more deaf. It is almost impossible to avoid them, but it can be reduced to levels inaudible to the human ear.

As a result, the harmonic distortion factor (harmonics) is one of the main parameters describing the overall sound quality in Hi-Fi and Hi-End amplifiers. The lower it is, the clearer the sound. Hundredths of a percent are considered a good indicator for modern amplifiers, thousandths and below are excellent. The exceptions are tube and hybrid models, for which rather high harmonic coefficients are allowed; see "Element base" for more details.

Line input

The sensitivity and dynamic impedance of the amplifier when a signal is applied to the RCA line input.

Under the sensitivity of any input (except optical) is meant the lowest signal voltage at this input, at which the amplifier is able to provide normal nominal power values (see "Power per channel (8Ω)"). This parameter determines, first of all, the requirements for the signal source. On the one hand, the voltage provided by this source must not be lower than the input sensitivity of the amplifier, otherwise the latter simply will not give the claimed characteristics. However, a significant excess in voltage should not be allowed, otherwise the sound will begin to be distorted. More detailed recommendations on choosing an amplifier by sensitivity are described in special sources.

For any input other than optical, it is believed that the higher this indicator, the less distortion the amplifier introduces into the signal. The minimum level of input impedance in modern models is considered to be 10 kOhm, and in high-end devices it can reach several hundred kOhm.

RCA

The number of line inputs in the amplifier design using the RCA interface. Unlike the Main input (see above), which can work with the same connectors, when connected to a linear RCA, the signal goes through all the stages of processing provided for in the amplifier — for example, adjusting the balance or frequencies (see "Adjustments"), etc. .P.

See “Amplifier Input (Main)” for details on the connector itself. Here we note that when using RCA as a linear interface, a pair of such connectors is considered one input. This is due to the fact that only one channel can be transmitted over one coaxial cable, so a pair is needed to work with stereo sound.

The number of signal inputs (of any type) determines how many signal sources can be simultaneously connected to the amplifier. Accordingly, it is worth choosing a model according to the number of inputs, taking into account the expected number of such sources: after all, it is easier to connect them all and select them through the amplifier’s remote control or control panel than to fiddle with reconnecting every time.

For acoustics

The number of outputs in the design of the amplifier, designed for direct connection of speakers. One such output is usually a pair of screw terminals designed to connect one speaker. Accordingly, the standard set for sound in stereo mode is two outputs (two pairs). However, in multi-channel devices (see “Number of channels”), as well as in models with the ability to connect additional speakers and/or Bi-Wiring (see “Additionally”), more speaker outputs are installed — in accordance with the capabilities of the amplifier.

On headphones

The type of connector used to connect headphones to an amplifier.

— 3.5 mm (mini-Jack). The most popular audio connector in modern portable electronics, also found among stationary equipment. However it is considered not as suitable for high-quality sound as 6.35 mm Jack, since it gives an increased likelihood of interference at the connection point. On the other hand, the vast majority of modern headphones, of all price categories, are made specifically for this connector. This means that the presence of a mini-Jack socket in most cases will allow you to connect headphones directly, without the use of adapters — that is, in the best way.

— 6.35 mm (Jack). This connector is typical mainly for stationary audio equipment, including professional class. It provides a better connection quality than the mini-Jack (in particular, less resistance due to the larger contact area), and is also more durable and reliable. At the same time, it is worth noting that only some high-end headphone models are equipped with a “native” plug under such a connector; and to connect the popular 3.5 mm mini-Jack you will need an adapter, which can affect the sound quality.
Cambridge Topaz AM5 often compared