USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Circulation Pumps

Comparison Grundfos UPS 25-70-180 7 m
1 1/2"
vs Wilo Star-RS 25/7 7 m
1 1/2"
180 mm

Add to comparison
Grundfos UPS 25-70-180 7 m 1 1/2"
Wilo Star-RS 25/7 7 m 1 1/2" 180 mm
Grundfos UPS 25-70-180 7 m
1 1/2"
Wilo Star-RS 25/7 7 m
1 1/2"
180 mm
from $94.87 up to $145.00
Outdated Product
from $65.20 up to $112.49
Outdated Product
TOP sellers
Main functioncentral heatingcentral heating
Designsingle headsingle head
Pump typecentrifugal
Rotor typewetwet
Specs
Max. flow4500 L/h5000 L/h
Max. head7 m7 m
Max. operating pressure10 bar10 bar
Minimum fluid temperature2 °С-10 °С
Max. fluid temperature95 °С110 °С
Features
3 speeds
3 speeds
Motor
Max. power consumption
140 W /120/95 Вт/
132 W /92/62 Вт/
Mains voltage230 V230 V
Shaft arrangementhorizontalhorizontal
Shaft materialstainless steelstainless steel
Connection
Connection typethreadthread
Inlet/outlet arrangementcoaxiallycoaxially
Inlet1 1/2"1 1/2"
Outlet1 1/2"1 1/2"
More specs
Pump housing materialcast ironcast iron
Impeller materialplasticplastic
Country of brand originDenmarkGermany
Protection classIP44IP44
Insulation classFF
Port-to-port length180 mm180 mm
Dimensions (HxWxD)134x122x180 mm100x142x180 mm
Weight2.4 kg2.9 kg
Added to E-Catalognovember 2014november 2014

Pump type

Centrifugal. As the name suggests, this type of pump uses centrifugal force. Their main element is the impeller installed in a round casing; the inlet is located on the axis of rotation of this wheel. During operation, due to the centrifugal force that occurs during the rotation of the wheel, the liquid is thrown from the centre to its edges and then enters the outlet pipe directed tangentially to the circle of rotation of the wheel. Centrifugal pumps are quite simple in design and inexpensive, while they are reliable and economical (due to high efficiency), and the fluid flow is continuous. At the same time, the performance of such units can drop with high resistance in the circuit.

Vortex. Vortex pumps are somewhat similar to centrifugal pumps: they also have a round casing and an impeller with blades. However, in such units, the inlet and outlet pipes of the working chamber are directed tangentially to the wheel, and the blades differ in design. The method of operation is also fundamentally different — it uses the vortices formed on the wheel blades. Vortex units are significantly superior to centrifugal units in terms of pressure, but they are sensitive to contamination — even small particles entering the impeller can cause damage, significantly reducing efficiency. And the efficiency of vortex pumps is low — 2-3 times lower than that of centrifugal pumps.

Max. flow

The maximum flow of a pump is the amount of liquid it can pump in a certain amount of time.

Features of choosing the optimal performance option depend primarily on the purpose of the pump (see above). For example, for DHW recirculation models, the pump performance should not exceed the performance of the water heater. If the water heater is capable of delivering 10 litres per minute to the DHW circuit, then the maximum pump performance will be 10*60=600 L/h. The basic formula for calculating the performance of a heating system takes into account the power of the heater and the temperature difference at the inlet and outlet, and for the cold water system — the number of points of water intake. More detailed information about the calculations for each application can be found in special sources, and it is better to entrust the calculations themselves to professionals.

Minimum fluid temperature

The lowest fluid temperature at which the pump is capable of operating normally.

Almost all pumps can normally transfer cool water, regardless of the purpose (see above); therefore, for normal household use, this parameter is not critical and for some models, it may not be indicated at all. But if you need the ability to work with liquids with temperatures below 15 °C, you should pay close attention to the minimum temperature. Some models that can be used with antifreeze normally tolerate even temperatures below zero.

Max. fluid temperature

The highest liquid temperature that the pump is capable of operating normally.

The possibility of using the unit directly depends on this parameter (see "Suitable for"): for example, models for heating systems must tolerate a temperature of at least 95 °C, and for DHW supply — at least 65 °C. Well, anyway, this parameter should not be exceeded: an overheated pump will fail very quickly, and the consequences of this can be very unpleasant.

Max. power consumption

The electrical power consumed by the pump during normal operation and maximum performance.

This indicator directly depends on performance — after all, for pumping large volumes of water, an appropriate amount of energy is needed. And the power depends on two main parameters — electricity consumption and the load on the power grid, which determines the connection rules. For example, pumps with a power of more than 5 kW cannot be connected to ordinary household sockets; more detailed rules can be found in special sources.

Country of brand origin

In this case, the country of origin refers to the country from which the product brand originates. A brand, in turn, is a general designation by which the products of a particular company are known in the market. The country of its origin does not always coincide with the actual place of production of the product: to reduce the cost of production, many modern companies transfer it to other countries. It is quite normal for products, for example, of an American or German brand, to be made in Taiwan or Turkey. Contrary to popular belief, this in itself does not lead to a decrease in the quality of the goods — it all depends on how carefully the brand owner controls the production. And many companies, especially large and famous ones, monitor the quality very zealously — after all, their reputation depends on it.
Wilo Star-RS 25/7 often compared