Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Surface Pumps

Comparison Vorskla BC 1.1 vs Sprut MRS3

Add to comparison
Vorskla BC 1.1
Sprut MRS3
Vorskla BC 1.1Sprut MRS3
from $64.00 up to $71.40
Outdated Product
from $70.54 up to $112.78
Outdated Product
User reviews
0
0
11
TOP sellers
Pump designvertical
Suitable forclean waterclean water
Specs
Maximum performance4500 L/h5000 L/h
Maximum head18 m35 m
Max. pressure7 bar
Pump typecentrifugalcentrifugal
Suction height7 m
Maximum particle size0.2 mm
Maximum liquid temperature45 °С40 °С
pH value6.5 – 9.5
Suction systemsingle-stagemultistage
Outlet size1"1"
Inlet hole size1"1"
Engine
Maximum power740 W750 W
Power sourceelectricelectric
Mains voltage230 V230 V
Engine typeasynchronous
General specs
Protection class (IP)4444
Country of originUkraineUkraine
Pump housing materialcast ironcast iron
Impeller / auger materialcast ironplastic
Dimensions395x175x184 mm
Weight10.5 kg
Added to E-Catalogjanuary 2016november 2014

Pump design

The general layout of the pump housing. In our catalogue, this parameter is indicated for models that differ in execution from the most popular option among units of their type.

— Vertical. This category includes surface pumps with a body that is elongated in height. Such a design can be useful, in particular in tight spaces where a unit with traditional horizontal housing simply does not fit.

- Column. A specific type of submersible drainage pump, resembling, by the name, a tall narrow column. At the top of this column is the motor and only the lower part of the device is immersed in the pumped liquid during operation. This eliminates the need for some of the equipment required for conventional drainage models (in particular, the suction pipe and foot valve).

- Toilet. Sewer models (see "Suitable for"), are made in the form of a toilet bowl with a pumping mechanism built inside, most often driven by an electric motor. The main advantage of such a unit over a classic toilet is that it does not require a flush tank. Thus, a bowl with a built-in pump may be the best choice for tight spaces. On the other hand, such "electric toilets" are noticeably more expensive than classic plumbing, and their cleaning in case of clogging is noticeably more difficult.

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Maximum head

The maximum head generated by the pump. This parameter is most often indicated in meters, by the height of the water column that the unit can create — in other words, by the height to which it can supply water. You can estimate the pressure created by the pump using a simple formula: every 10 m of head corresponds to a pressure of 1 bar.

It is worth choosing a pump according to this parameter, taking into account the height to which it should supply water, as well as adjusting for losses and the need for pressure in the water supply. To do this, it is necessary to determine the difference in height between the water level and the highest point of water intake, add another 10 to 30 m to this figure (depending on the pressure that needs to be obtained in the water supply), and multiply the result by 1.1 — this will be the minimum pressure required.

Max. pressure

The highest pressure that the pump is capable of creating during operation. This parameter is directly related to the maximum head (see above); however, it is less obvious, and therefore, it is indicated rarely.

Suction height

The largest difference between the height of the pump and the height of the water level at which the pump can provide normal suction. Without special devices, the maximum value of this parameter is 7-8 m — this is due to the physics of the process. However, when using an ejector (see below), the suction height can be increased several times.

Maximum particle size

The largest particle size that the pump can handle without problems. This size is the main indicator that determines the purpose of the device (see above); and in general, the larger it is, the more reliable the device, the lower the risk of damage if a foreign object enters the suction line. If the risk of the appearance of too large mechanical impurities is still high, additional protection can be provided with filters or grids at the inlet. However, such a measure should be considered only as a last resort, because from constant exposure to solid particles, the grids become clogged and deformed, which can lead to both clogging of the line and filter breakthrough.

Maximum liquid temperature

The highest temperature of water at which the pump is capable of operating normally. Usually, in most models this parameter is 35-40 °C — at high temperatures it is difficult to ensure effective cooling of the engine and moving parts, and in fact, such conditions are rare.

pH value

The pH value of the pumped liquid for which the pump is designed. This indicator describes the level of acidity of the medium, roughly speaking, how reactive it is to the “acidic” or “alkaline” side: low pH values correspond to an acidic environment, and high pH values are alkaline. Acid and alkaline have different effects on the materials used in the construction of various equipment, including pumps. Therefore, when designing parts in direct contact with the liquid, the pH level must be taken into account, and the use of the pump with unsuitable substances is not recommended — this can lead to corrosion, which affects the composition of the pumped liquid and reduces the life of the unit. However, this parameter is critical mainly for specialized models such as pumps for chemical liquids or sewage (see "Suitable for"). In ordinary water (even dirty) the pH range is not so extensive that it cannot be covered entirely.

Suction system

— Single-stage. Suction system with one impeller or similar element. Although such a design loses to a multistage one in terms of efficiency and power, at the same time, its characteristics are quite enough for most tasks; while single-stage pumps are simpler and cheaper. Due to all this, this option is used in most modern units.

— Multistage. This suction system consists of several impellers (or other similar parts that directly provide suction). Such pumps are significantly superior to single-stage ones, they provide powerful pressure and are less sensitive to impurities. At the same time, in fact, all these advantages are needed relatively rarely, and multistage systems are quite expensive. Because of this, they are used in a relatively small number of pumps — they are mainly powerful models designed for situations where one suction stage is not enough.
Vorskla BC 1.1 often compared
Sprut MRS3 often compared