USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Submersible (Drainage) Pumps

Comparison Makita PF1110 vs Makita PF1100

Add to comparison
Makita PF1110
Makita PF1100
Makita PF1110Makita PF1100
Compare prices 3Compare prices 2
TOP sellers
Main
Stainless steel body. Double end seal. Quiet work.
Light weight. Auto-shutdown in case of strong voltage drops in the power supply network.
Suitable forwaste waterwaste water
Specs
Maximum performance15000 L/h
15000 L/h /maximum/
Maximum head10 m
9 m /maximum/
Minimum liquid level50 mm
Maximum immersion depth5 m5 m
Maximum particle size35 mm35 mm
Dry run protection
Float switch
Suction systemsingle-stagesingle-stage
Outlet size1", 1 1/4" and 2"1", 1 1/4" and 2"
Engine
Maximum power1100 W1100 W
Power sourceelectricelectric
Mains voltage230 V230 V
Power cord length10 m
General specs
Protection class (IP)6868
Country of originJapanJapan
Pump housing materialstainless steelstainless steel
Impeller / auger materialstainless steel
Dimensions160x185x355 mm
Weight5.9 kg5.9 kg
Added to E-Catalogdecember 2014december 2014

Maximum head

The maximum head generated by the pump. This parameter is most often indicated in meters, by the height of the water column that the unit can create — in other words, by the height to which it can supply water. You can estimate the pressure created by the pump using a simple formula: every 10 m of head corresponds to a pressure of 1 bar.

It is worth choosing a pump according to this parameter, taking into account the height to which it should supply water, as well as adjusting for losses and the need for pressure in the water supply. To do this, it is necessary to determine the difference in height between the water level and the highest point of water intake, add another 10 to 30 m to this figure (depending on the pressure that needs to be obtained in the water supply), and multiply the result by 1.1 — this will be the minimum pressure required.

Minimum liquid level

The smallest depth of pumped liquid (from the bottom to the surface) at which the pump can operate normally. This parameter is indicated for submersible drainage models, for other types it is not relevant for various reasons.

Power cord length

The length of the cable that supplies electricity to the pump with the appropriate type of power supply (see above). The longer the cable the farther from the socket or other power source you can install the pump. This parameter is especially important for submersible models: if the cable is too short, it will simply be impossible to lower the pump to the maximum depth provided for by its design, because ordinary extension cords cannot be immersed in water.

Impeller / auger material

The material from which the main working element of the pump is made is an impeller, an auger or a membrane. This part is in direct contact with the pumped liquid, so its specs are key to the overall performance and capabilities of the pump.

— Plastic. Plastic is low-cost, and it is not subject to corrosion. It is believed that the mechanical strength of this material is generally low, and it does not tolerate contact with solid impurities. However, today there are many varieties of plastic — including special high-strength varieties that are suitable even for working with heavily polluted water or sewage. So plastic impellers/augers can be found in a variety of types of pumps; the overall quality and reliability of such parts, usually, depend on the price category of the unit.

— Cast iron. Solid, durable, reliable and, at the same time, relatively inexpensive material. In terms of corrosion resistance, cast iron is theoretically inferior to more advanced alloys like stainless steel or aluminium; however, subject to the operating rules, this point is not critical, and the service life of cast iron parts is no less than the total service life of the pump. The unequivocal disadvantages of this option include a large mass, which slightly increases the energy/fuel consumption during operation.

— Stainless steel. By the name, one of the key advantages of stainless steel is high resistance to corrosion — and, accordingly, reliability and durabili...ty. Such an alloy is somewhat more expensive than cast iron, but it also weighs less.

— Aluminium. Aluminium alloys combine strength, reliability, corrosion resistance and low weight. However, such materials are quite expensive — more expensive than the same stainless steel, not to mention cast iron.

— Brass. The varieties of brass used in pumps are distinguished by high strength and hardness, as well as insensitivity to moisture. Such materials are quite expensive, but this price is fully justified by the mentioned advantages. Therefore, in certain types of pumps — in particular, surface models and pressure tank units — brass impellers are very popular.

— Bronze. A material similar in many properties to the brass described above. However, bronze is used much less frequently — in particular, due to a slightly higher cost.

— Steel. Varieties of steel that are not related to stainless steel are used extremely rarely — in certain models of pumps for chemical liquids. At the same time, steel is usually used as a base in such parts, and a coating of fluoroplastic or other similar material is applied to it to protect it from corrosion.

— Silumin. Silumins are called aluminium alloys with the addition of silicon. For several reasons, such materials are rare in pumps, and mainly among relatively inexpensive models.

— Rubber. Material traditionally used for diaphragms in vibratory pumps (see “Pump type”).