USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Deep Well Pumps

Comparison Sprut 3S QGD 1-40-0.55 vs Vodolej NVP-63

Add to comparison
Sprut 3S QGD 1-40-0.55
Vodolej NVP-63
Sprut 3S QGD 1-40-0.55Vodolej NVP-63
from $88.40 up to $105.64
Outdated Product
from $192.00
Outdated Product
TOP sellers
Max. performance
1900 L/h /maximum/
1200 L/h /maximum/
Max. head
90 m /maximum/
90 m /maximum/
Specs
Operating principleaugerauger
Max. particle size1 mm
Mechanical impurities30 g/m³
pH value6.5 – 9.5
Suction systemsingle stagesingle stage
Oulet size1"1"
Max. liquid T35 °С
Motor
Power consumption500 W850 W
Mains voltage230 V230 V
Power cable length15 m
General specs
Overheat protection
Country of originUkraineUkraine
Impeller materialstainless steeltechnopolymer
Dimensions78х604 mm
Weight8 kg17 kg
Added to E-Catalogmarch 2016december 2014

Max. performance

The maximum amount of water that the pump can deliver from the well per unit of time. The choice for this parameter depends on two main points: the maximum total consumption and productivity of the well.

The maximum total consumption is the amount of water that is necessary for the simultaneous normal operation of all points of water intake in the system. Different types of consumers (washbasins, showers, washing machines, etc.) require different amounts of water; exact values can be found in special tables or instructions for specific models of household appliances. And the total consumption can be calculated by adding the indicators of all points of water intake. As for the productivity of the well, this is the maximum amount of water that the well can produce in a certain time without draining it. This indicator is usually indicated in the documents for the well; if it is unknown, before buying a permanent pump, it is imperative to determine the productivity — for example, by trial pumping with an inexpensive unit.

Accordingly, the performance of the pump should not exceed the productivity of the well, and it should be at least 50% of the maximum total consumption of the connected water supply system. The first rule allows you to avoid draining the pump and the troubles associated with it, and compliance with the second guarantees a normal amount of water even with a rather intensive water intake. And, of course, do not forget that high performance requires high power and affects the cost of the device.

Max. particle size

The largest size of solids in the pumped water that the pump can handle without failure. It is one of the parameters characterizing the unit's ability to work with dirty water (along with the content of mechanical impurities, see below): the larger the particles, the more reliable the pump and the lower the likelihood of it breaking down due to pollution. This point is especially relevant for recently drilled wells, where the water has not yet had time to clear.

Mechanical impurities

The largest amount of mechanical impurities in the pumped water, which the pump can handle normally. When used with dirty water, this parameter should be taken into account along with the maximum particle size (see above): if the impurity content is too high, the pump may fail even if the individual particle size does not exceed the norm.

pH value

The pH value of the pumped liquid for which the pump is designed. This indicator describes the level of acidity of the medium, roughly speaking, how reactive it is to the “acidic” or “alkaline” side: low pH values correspond to an acidic environment, and high pH values are alkaline. Acid and alkaline have different effects on the materials used in the design of various equipment, including pumps. Therefore, when designing parts in direct contact with water, the pH level must be taken into account, and using the pump with unsuitable water is not recommended — this can lead to corrosion, poor water quality and a quick failure of the unit. At the same time, it is worth noting that drinking water wells typically have a pH of 6.5 to 8, and overlapping this range (and even wider) is not a problem. Therefore, this parameter can be called secondary, and in many models, it is not indicated at all.

Max. liquid T

The highest suction water temperature at which the pump can operate normally. For deep well pumps, the water temperature is also important because the pump is constantly immersed in water during operation, and the liquid provides cooling. Therefore, in modern models, performance indicators are usually low — less than 30-35 °C. However, the temperature in artesian wells, usually, is much lower (the only exceptions are regions with thermal waters, but specific equipment is used there).

Power consumption

The power consumed by the pump motor during operation. A more powerful engine can provide more head and performance, but these parameters are not directly related: two models of similar power can differ markedly in practical characteristics. Therefore, this parameter is secondary, and more or less unambiguously it describes only the class of the unit as a whole — powerful engines are typical for high-end performant models. But what this characteristic directly affects is the actual power consumption; and with it, in turn, are connected not only to electricity bills but also connection requirements.

Power cable length

The length of the standard power cable provided in the design of the pump.

Ideally, the length of this cable should not be less than the maximum immersion depth — this will ensure maximum ease of connection: the connection point of the cable to the mains will be above the water (in the best case, even outside the well), and you will not have to worry about insulation. At the same time, for several reasons, many pumps are equipped with rather short cords — about 1.5-2 m, and not long cables; in such cases, it is necessary to use special waterproof equipment.

Overheat protection

To avoid overheating of the engine, deep well pumps are equipped with a special thermal relay. When it detects a heating temperature above the norm, it automatically turns off the motor, preventing it from failing.

Impeller material

The material from which the pump impeller is made.

A wide variety of materials are used in modern well pumps. However, the manufacturer, usually, chooses the option so that the strength, reliability, resistance to pollution and other key features of the wheel correspond to the required characteristics of the pump and its level as a whole. In addition, the same material may have several varieties that differ markedly in characteristics; this is especially true for technopolymers and thermoplastics, but most metallic materials such as stainless steel or brass also come in several grades. All this means that when choosing a pump, it makes sense to look first of all at performance characteristics, price category, reviews and other practically significant information, and the material of the impeller is of secondary importance.
Sprut 3S QGD often compared
Vodolej NVP often compared