In box
—
RTR (Ready to Run) — the box contains a fully configured and ready-to-run model. Such models are equipped with a battery, a remote control, and a charger.
—
ATR (almost-ready to run). The model is almost completely ready for use, but some of the elements are still missing. The list of missing components can include both a battery and a remote control or charger. All of the above components may be missing at once. Missing parts must be purchased separately. Models in the ATR package are designed for advanced users, this package allows you to choose batteries or controls based on your own needs and requirements.
— PNP. the receiver and transmitter are not included in the package, and often there is no battery. Additionally, the PNP set may not contain control equipment. Radio models in the PNP configuration are designed for professionals who often use individual electronics. Usually, the design of the model itself is collapsible, which significantly increases the maintainability of the product. Many models sold in the PNP configuration are allowed to participate in prestigious exhibitions and competitions.
— K.I.T. For the most part, only body parts are provided in the kit. The kit has a lot in common with the designer, because from such a kit it is possible to assemble various options for the body of the radio model. The KIT package includes neither radio communication mod
...ules, nor control equipment, nor electric motors. That is, the user will have to buy / manufacture all the hardware of the radio-controlled model on their own. Radio models in the KIT package are designed for advanced users. KIT kits are suitable for assembling advanced models, which are often used in prestigious exhibitions and sports competitions.Model scale
The scale allows you to estimate the overall dimensions of the model — it describes the ratio of its dimensions to the dimensions of a full-size machine of a similar type (see below). For example, the length and width of a full-sized buggy average about 4 m and 2 m, respectively; this means that for a radio-controlled model on a scale of
1:10, these parameters will be 10 times smaller — about 40 cm and 20 cm (plus or minus).
Miniature scales are considered to be
1:24 or less (
1:28 and
1:32), while in the largest scales it reaches
1:6(
1:5) — such models are not much smaller than children's cars (however, they are not intended to replace them). A small size is considered optimal for use in residential areas, a large one — in open areas. Most road models (see 'Type') are available in 1:10 scale, SUVs in
1:8, and larger scales are found in advanced internal combustion engine models (see 'Engine'). The most common scale options are
1:14,
1:16 and
1:18, which are found in both the low-cost and high-end segments.
Type
—
Highway. Also known as "touring". These are cars that outwardly copy passenger cars — both ordinary production cars and tuned ones, and even special cars like NASCAR cars. They can have a ring or drift purpose (see above), in general, they have high speed and good handling.
—
Buggy. Full-size buggy-type vehicles are light all-wheel drive vehicles for off-road driving, primarily sand, with a characteristic body structure (angular panels, open frame elements, safety arcs) and suspension (wheels are most often noticeably moved to the side on the suspension arms). Radio-controlled buggies have a similar design. The body, however, is often stylized as racing cars, but this type of specialization is primarily off-road — for example, many short-course models (see "Destination") are specifically buggies.
—
Truggy. This class is in many ways similar to the buggies described above, but differs from them in larger wheel diameters, longer suspension arms and increased ground clearance (see below). This may slightly reduce the speed, but increases the throughput; truggies are used for both short-course and trick riding (see Purpose/Class).
—
SUV (monster). As the name implies, such models copy monster trucks — cars stylized as pickup trucks, the most striking feature of which are huge wheels, powerful engines and corr
...esponding chassis features (large suspension travel, high ground clearance). Like the full-size originals, radio-controlled monster trucks are in many ways similar to buggies (see above), and differ from them only in the described features. "Monsters" are relatively poorly suited for high-speed driving, but they have high cross-country ability, due to which models for tricks and short courses are found in this type (see "Destination (class)").
— Rally. Such cars are a cross between "touring" and full-fledged SUVs. Outwardly, they are similar to road models, but have significantly more suspension travel, more powerful engines and improved mud protection. At the same time, rally cars are not designed for full-fledged off-road driving, overcoming significant bumps, etc.; their maximum is a dense coating like packed sand or fine gravel.
— Crawler. A specialized type of radio-controlled cars designed to overcome obstacles. Externally, the crawlers are somewhat similar to the “monsters” described above, but differ from them in a higher suspension height, which provides a characteristic silhouette: a body raised high on long “legs”. This design allows crawlers to cope with difficult obstacles — like stone scree with steep slopes. Note that the speed characteristics of this category of cars are quite modest, because. the emphasis in them is primarily on high cross-country ability.
— Changeling. Models of cars that even turned over will be able to continue moving. At the same time, from different sides, the body of the machine may look different. Such models have good cross-country ability and are considered stunt models (see "Purpose (class)").Age
The minimum age for which this radio-controlled model is suitable. These recommendations are rather conditional, but it is still not recommended to deviate from them. "Adult"
14+ models with a lot of adjustments, moving parts and power simply will not be able to master a young rider of
preschool and maybe even
school age. At the same time, models for the younger age category (
3+,
4+,
5+) may not be interesting and boring for older children (
children 6 and
8+). It is also worth noting that radio-controlled cars are not always children's toys and there are models for modeling, racing — professional use.
Max. speed
The highest speed that the machine can develop. Usually, this parameter is indicated for certain "perfect conditions": a flat track, high-quality fuel or a full battery charge (depending on the type of engine, see above), etc. Real figures tend to be somewhat lower; however, different models can be compared with each other according to this characteristic.
High maximum speed is important primarily for "racing" cars (ring and short-course, see above); in stunt and drift models, it does not play a decisive role. Also, you should pay attention to the maximum speed values when buying an amateur model for entertainment — here you need to take into account the features of its application. For example, if the machine is intended for a 3-4 year old child as a toy in an apartment, high speed will not be an advantage, but a disadvantage (especially since the cost of the “apparatus” directly depends on its speed).
Drive
— Full. As the name implies, in such models, traction from the engine is transmitted to all 4 wheels. The main advantage of this scheme is its high cross-country ability: the machine keeps well on difficult terrain, and even getting stuck with a pair of wheels in the air is not critical for it. Also, four-wheel drive can be used for drifting (see "Appointment (class)"), although it loses a little in this role to the rear one; however, a lesser tendency to drift can be an advantage. Its main disadvantage is the rather high cost associated with the difficulties in production. In addition,
4WD vehicles tend to be less fuel efficient than "single wheel drive" vehicles.
—
Rear. Models with power transmission from the engine to the rear pair of wheels. This scheme is quite unstable and requires careful control at high speeds — if you turn too sharply, the car easily goes into a skid. On the other hand, it is precisely because of the instability that this option is considered optimal for drift racing, and the design of the rear-wheel drive is very simple, reliable and inexpensive. As a result, most non-4WD RC models use it.
—
Front. The front-wheel drive has a high degree of stability: you can only send the car into a skid intentionally (and then you need to try hard), and the withdrawal from it is extremely simple. At the same time, stability is not always a
...n advantage — for example, in drifting, it only creates additional problems. In addition, the design of such models is quite complex due to the need to combine the drive from the engines and steering on the same pair of wheels; as a result, in terms of price, reliability and ease of maintenance, they lose to rear-wheel drive. Therefore, front-wheel drive is not widely used in radio-controlled cars.Power source
The type of power source used in a machine with an electric motor (see “Motor”).
- AA. Replaceable elements of a standard size, popularly known as “pen-light batteries”. The main advantage
of battery-powered cars over
battery-powered cars is the ability to quickly replace dead batteries. On the other hand, the power of such power supply is quite modest, so they are found mainly in models for younger people.
- AAA. Such elements are almost completely similar to the AA described above and outwardly differ from them only in their reduced size (which is reflected in their common name - “little finger”).
- Ni-Mh. Specialized batteries made using nickel-metal hydride technology like other batteries (
Li-Pol,
Li-Ion,
Ni-Cd,
LiFePO4,
branded) are superior to replacement batteries in capacity and compactness and are better suited for powerful electric motors.
Ni-Mh batteries themselves are notable primarily for their ability to withstand high charge and discharge currents without consequences - the first is important given the “gluttony” of electric motors, the second has a positive effect on the charging speed. In addition, such batteries are resistant to low temperatures, do not h
...ave a “memory effect”, and are relatively inexpensive. At the same time, they are inferior to Li-Pol elements in terms of capacity (with the same dimensions).
- Li-Pol. Specialized batteries made using lithium-polymer technology. For more information on specialized batteries in general, see above (Ni-Mh). Li-Pol technology itself makes it possible to create batteries with high capacity, small size and weight, and without the “memory effect,” however, it is quite expensive.
- Ni-Cd. A relatively old battery manufacturing technology, the predecessor of the Ni-Mh described above. The common features of these technologies are resistance to high charge and discharge currents, low temperatures, and low cost. True, nickel-cadmium batteries are subject to the “memory effect” - a decrease in capacity when charging an incompletely discharged battery; however, this can be corrected by using advanced chargers and following operating instructions. But the clear disadvantage of this option is considered to be environmental unsafety during production and disposal; This is typical for all batteries, but it is most relevant for Ni-Cd cells, so they are used less and less.
— Li-Ion. Batteries made using lithium-ion technology and not belonging to any of the universal standard sizes (like AA). Lithium-ion batteries are practically not subject to the “memory effect”, are easy to use and charge fairly quickly. Their disadvantages include a higher price and less resistance to high and low temperatures.
— LiFePO4. Lithium iron phosphate batteries are actually a modification of lithium-ion batteries (see the corresponding paragraph), developed to eliminate some of the shortcomings of the original technology. They are notable above all for their high reliability and safety: the likelihood of a battery “exploding” when overloaded is reduced to almost zero, and in general LiFePO4 can cope with high peak loads without any problems. In addition, they are quite resistant to cold and maintain operating voltage almost until discharge. The main disadvantage of this type is its slightly smaller capacity.
— Branded battery. This category includes all specialized batteries (see subparagraph “Ni-Mh” above), for which the manufacturer did not indicate the manufacturing technology. We also note that if “ordinary” specialized batteries can be standard and can be used in different models of radio-controlled equipment, then branded batteries often have an original design and are designed only for cars from one manufacturer.Battery voltage
The operating voltage of the battery supplied with the machine. For models for AA and AAA cells (see “Battery Type”), it is not indicated — the specification of these cells assumes a common voltage standard, about 1.5 V. In other cases, battery voltage data does not play a significant role in everyday use, but may be useful , if you need to pick up a charger, a spare battery or a battery to replace a damaged one, but you do not have data on the battery model (see below).
Battery capacity
The capacity of the battery supplied with the electric motor model (see "Motor"). Indicated only for variants using original batteries (see "Battery type"), measured in ampere-hours: 1 Ah corresponds to the capacity at which the battery is capable of delivering a current of 1 A for 1 hour.
The higher the capacity of the battery, the longer, usually, the “device” is able to work without recharging. However, the practical time of operation on a charge is largely determined by other characteristics of the machine — scale, purpose (see both points above), weight, model and engine power, etc. Therefore, in most cases, this parameter plays a purely reference role, and it is only possible to compare the battery capacity among themselves with machines that do not have any significant differences in other characteristics.