USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   Generators

Comparison Daewoo GDA 3500DFE Master vs Vitals ERS 2.8bng

Add to comparison
Daewoo GDA 3500DFE Master
Vitals ERS 2.8bng
Daewoo GDA 3500DFE MasterVitals ERS 2.8bng
from $438.00 up to $499.80
Outdated Product
from $411.83 up to $466.36
Outdated Product
TOP sellers
Main
Gasoline / gas. Electric starter. Automatic voltage regulator (AVR). Output 12 V.
Fuelpetrol / gaspetrol / gas
Output voltage230 B230 B
Rated power2.8 kW2.8 kW
Max. power3.2 kW3 kW
Alternatorsynchronoussynchronous
Alternator windingcoppercopper
Engine
ICE type4-stroke4-stroke
Motor typeDaewoo Series 210
Engine size208 cm³196 cm³
Power7.5 hp6.5 hp
Launch typeelectric starter (key)manual
Fuel consumption
1.2 L/h /petrol, at 50% load/
1.36 L/h /petrol/
Fuel consumption1.8 m³/h
Fuel tank volume18 L15 L
Fuel level indicator
Continuous operation time
15 h /at 50% load/
11 h
Motor coolingairair
Connection
Number of sockets (230/400 V)22
Sockets 230 V16 A x216 A x2
Output 12 Vterminals
Features
Functions
automatic voltage regulator (AVR)
display
hour metre
voltmeter
automatic voltage regulator (AVR)
 
 
voltmeter
General
Protection levelIP 23IP 23
Noise level69 dB
Sound level (7 m)69 dB
Dimensions605x430x425 mm610x445x430 mm
Weight45 kg50 kg
Added to E-Catalogaugust 2016january 2014

Max. power

The maximum power supply that the generator can provide.

This power is slightly higher than the rated power (see above), but the maximum performance mode can only be maintained for a very short time - otherwise overload occurs. Therefore, the practical meaning of this characteristic is mainly to describe the efficiency of the generator when operating with increased starting currents.

Let us remind you that some types of electrical appliances at the moment of startup consume many times more power (and, accordingly, power) than in normal mode; this is typical mainly for devices with electric motors, such as power tools, refrigerators, etc. However, increased power for such equipment is needed only for a short time; normal operation is restored in just a few seconds. And you can evaluate the starting characteristics by multiplying the rated power by the so-called starting coefficient. For one type of equipment it is more or less the same (1.2 - 1.3 for most power tools, 2 for a microwave, 3.5 for an air conditioner, etc.); More detailed data is available in special sources.

Ideally, the maximum power of the generator should be no lower than the total peak power of the connected load - that is, the starting power of equipment with a starting factor above 1 plus the rated power of all other equipment. This will minimize the likelihood of overloads.

Motor type

Model name of the engine installed in the generator. Knowing this name, you can, if necessary, find detailed data on the engine and clarify how it meets your requirements. In addition, model data may be needed for some specific tasks, including maintenance and repair.

Note that modern generators are often equipped with branded engines from famous manufacturers: Honda, John Deere, Mitsubishi, Volvo, etc. Such engines are more expensive than similar units from little-known brands, but this is offset by higher quality and/or solid warranty conditions , and in many cases, the ease of finding spare parts and additional documentation (such as manuals for special maintenance and minor repairs).

Engine size

The working volume of the engine in a gasoline or diesel generator (see "Fuel"). Theoretically, more volume usually means more power, but in fact, everything is not so clear. Firstly, the specific power strongly depends on the type of fuel, and in gasoline units, also on the type of internal combustion engine (see above). Secondly, similar engines of the same power can have different volumes, and there is a practical point here: with the same power, a larger engine consumes more fuel, but by itself it can cost less.

Power

The operating power of the engine installed in the generator. Traditionally stated in horsepower; 1 HP approximately equal to 735 watts.

First of all, the rated power of the generator directly depends on this indicator (see above): in principle, it cannot be higher than the engine power, moreover, part of the engine power is spent on heat, friction and other losses. And the smaller the difference between these capacities, the higher the efficiency of the generator and the more economical it is. However high efficiency affects the cost, but this difference can pay off with regular use due to fuel savings.

Launch type

Method of starting an electric generator engine. To start an internal combustion engine (gasoline or diesel, see “Fuel”), in any case, it is necessary to rotate the engine shaft; you can do this in two ways:

- Manual. With this starting method, the initial impulse is transmitted to the engine manually - usually the user needs to forcefully pull the cable that spins a special flywheel. The simplest in design and cheapest starting method, the additional equipment requires only the cable itself with a flywheel. On the other hand, it may require significant muscular effort from the user and is not well suited for high-power units.

Electric starter. With this type of starting, the engine shaft is rotated using a special electric motor, which is called a starter; The starter is powered by its own battery. This option for starting the generator power unit is the easiest for the user and requires a minimum of effort. Depending on the implementation of the electric starter, it is usually enough to turn the key in the ignition, press a button, turn a knob or spin a special drum, etc. The power of modern starters is sufficient even for heavy engines where manual starting is difficult or impossible. Also note that an electric starter is by definition required to use ATS autostart (see Features). On the other hand, additional equipment affects the weight and cost of the unit, sometimes quite notic...eably. Therefore, such starting systems are used mainly where they cannot be avoided - in the aforementioned heavy equipment, as well as generators with ATS.

Fuel consumption

Fuel consumption of a gasoline or diesel generator, and for combined models — when using gasoline (see "Fuel").

A more powerful engine inevitably means more fuel consumption; however, models with the same engine power may differ in this indicator. In such cases, it is worth considering that a model with a lower flow rate usually costs more, but this difference can quickly pay off, especially with regular use. In addition, knowing the fuel consumption and tank volume, you can determine how long one refueling will last; at the same time, in inverter models at partial load, the actual operating time may be noticeably higher than the theoretical one, see "Alternator" for details.

Fuel consumption

Fuel consumption of a generator running on gas or a combined model using gas (see "Fuel").

A more powerful engine inevitably means more fuel consumption; however, models with the same engine power may differ in this indicator. In such cases, it is worth considering that a model with a lower flow rate usually costs more, but this difference can quickly pay off, especially with regular use.

Fuel tank volume

The volume of the fuel tank installed in the generator.

Knowing the fuel consumption (see above) and the capacity of the tank, you can calculate the operating time on one gas station (if it is not indicated in the specifications). However, a more capacious tank is also more bulky. Therefore, manufacturers choose tanks based on the general level and "voracity" of the generator — in order to provide an acceptable operating time without a significant increase in size and weight. So in general, this parameter is more of a reference than practically significant.

As for the numbers, in low-power models, tanks are installed for 5 – 10 liters, or even less ; in heavy professional equipment, this figure can exceed 50 liters.

Continuous operation time

The time during which the generator is guaranteed to operate without interruption.

This parameter is indicated exclusively for liquid fuel models with a built-in tank, and according to the simplest formula: tank capacity divided by fuel consumption. However, in some models, data may be provided for a certain load level (which is specified in the notes); at a higher or lower load, the operating time will be shorter or longer, respectively. As for specific numbers, in most modern generators the operating time is up to 8 hours - this is quite enough for backup power and occasional use. More reputable models are capable of working for 8 – 12 hours, and an indicator of 13 hours and above is typical mainly for professional solutions.

We also note that, theoretically, many generators can be refueled without shutting down, but in practice it is better to take breaks and not exceed the stated time of continuous operation - this will avoid overheating and increased wear.
Daewoo GDA 3500DFE Master often compared
Vitals ERS 2.8bng often compared