USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Asus X751NA [X751NA-DS21Q] vs Lenovo Ideapad 320 17 [320-17IKB 80XM0095RA]

Add to comparison
Asus X751NA (X751NA-DS21Q)
Lenovo Ideapad 320 17 (320-17IKB 80XM0095RA)
Asus X751NA [X751NA-DS21Q]Lenovo Ideapad 320 17 [320-17IKB 80XM0095RA]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size17.3 "17.3 "
Screen typeTN+filmTN+film
Surface treatmentglossanti-glare
Screen resolution1600x900 (16:9)1600x900 (16:9)
Refresh rate60 Hz60 Hz
CPU
SeriesPentiumPentium
ModelN42004415U
Processor cores42
CPU speed1.1 GHz2.3 GHz
TurboBoost / TurboCore frequency2.5 GHz
L2 cache2048 KB512 KB
L3 cache2 MB
3DMark062636 score(s)3249 score(s)
Passmark CPU Mark2019 score(s)3213 score(s)
SuperPI 1M31.38 sec16.66 sec
RAM
RAM4 GB4 GB
Max. RAM8 GB20 GB
RAM typeDDR3LDDR4
RAM speed1600 MHz2133 MHz
Slotsbuilt-in + 1 slotbuilt-in + 1 slot
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesIntel HD GraphicsIntel HD Graphics
Graphics card modelHD Graphics 505HD Graphics 610
3DMark063721 score(s)6869 score(s)
3DMark Vantage P1957 score(s)3715 score(s)
Storage
Drive typeHDDHDD
Drive capacity1000 GB500 GB
HDD speed5400 rpm5400 rpm
Connections
Connection ports
VGA
HDMI
 
HDMI
Card reader
 /SD/
 /SD/MMC/
USB 2.02
USB 3.2 gen11 pc2
USB C 3.2 gen1
1 pc /USB 3.1 Gen 1/
Alternate Mode
LAN (RJ-45)1 Gbps1 Gbps
Multimedia
Webcam640x480 (VGA)640x480 (VGA)
Camera shutter
Speakers22
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
Backlightis absentis absent
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity2950 mAh
Battery capacity30 W*h
Number of battery cells42
Operating time5 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OSWindows 10 HomeWindows 10 Home
Materialmatte plasticmatte plastic
Dimensions (WxDxT)415x272x35 mm418x292.6x24.9 mm
Weight2.8 kg2.8 kg
Color
Added to E-Catalogmay 2018october 2017

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

L2 cache

The amount of cache memory level 2 (L2) provided in the laptop processor.

The cache is a processor's own buffer, which stores the most frequently used data from RAM during operation. This speeds up access to them and has a positive effect on system performance. The cache is divided into several levels; the larger the volume of each level, the more data can be stored in it for quick access and the higher the performance (ceteris paribus). Specifically, the L2 cache occupies an intermediate position between the small and fast L1 cache of the first level and the large, but relatively slow L3 cache. Its capacity can reach 12 MB; however, in laptop processors, it is most often noticeably more modest — about 2 – 4 MB.

L3 cache

The amount of cache memory level 3 (L3) provided in the laptop processor.

The cache is a processor's own buffer, which stores the most frequently used data from RAM during operation. This speeds up access to them and has a positive effect on system performance. The cache is divided into several levels; the larger the volume of each level, the more data can be stored in it for quick access and the higher the performance (ceteris paribus). Level 3 cache has the lowest performance and the largest volume — in laptop processors it can reach 16 MB.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).