Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Bosch Gaz 6000 WBN-24H RN 24 kW vs Bosch Gaz 6000 WBN-24C RN 24 kW

Add to comparison
Bosch Gaz 6000 WBN-24H RN 24 kW
Bosch Gaz 6000 WBN-24C RN 24 kW
Bosch Gaz 6000 WBN-24H RN 24 kWBosch Gaz 6000 WBN-24C RN 24 kW
from $508.50 up to $673.16
Outdated Product
from $536.40 up to $709.58
Outdated Product
User reviews
1
0
0
3
TOP sellers
Main
Compact dimensions. Wide power control range. Low noise level. Stable operation at low inlet gas pressure. Low outdoor temperature and mains voltage fluctuations. Built-in 3-way valve for boiler connection.
DHW capacity at Δt=30° - 11.4 L/min, at Δt=50° - 6.8 L/min. Light weight. Frost protection. Resistant to mains voltage fluctuations. Ability to work with liquefied gas.
Energy sourcegasgas
Installationwallwall
Typesingle-circuit (heating only)dual-circuit (heating and DHW)
Heating area192 m²192 m²
Technical specs
Heat output24 kW24 kW
Min. heat output7.2 kW7.2 kW
Power supply230 V230 V
Power consumption150 W
Coolant min. T40 °С40 °С
Coolant max. T82 °С82 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar
Consumer specs
DHW min. T35 °С
DHW max. T60 °С
"Summer" mode
Heated floor mode
Circulation pump
Control busOpenThermOpenTherm
Boiler specs
Efficiency93.2 %93.2 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100 mm60/100 mm
Inlet gas pressure16 mbar16 mbar
Max. gas consumption2.8 m³/h2.8 m³/h
Expansion vessel capacity6 L8 L
Expansion vessel pressure0.5 bar0.5 bar
Heat exchangercoppercopper
Connections
Mains water intake1/2"
DHW flow1/2"
Gas supply3/4"3/4"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
More specs
Dimensions (HxWxD)700x400x299 mm700x400x299 mm
Weight30 kg31 kg
Added to E-Catalogaugust 2014august 2014

Type

Depending on the set of functions, boilers are divided into single-circuit and dual-circuit.

- Single-circuit boilers are equipped with one heat exchanger, in which the heat from fuel combustion is transferred to the heat medium of the heating system. The only function of such boilers is space heating. It is technically possible to use single-circuit boilers to provide hot water, but this requires an additional tank (the so-called indirect water heater).

- In dual-circuit boilers, the primary heat exchanger is supplemented by a secondary one. Due to this, such a boiler, in addition to heating the room, also provides a hot water supply. In this case, both running water and water accumulated in a special tank(see Built-in water heater tank) can be used.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

DHW circuit max. pressure

The maximum pressure in the hot water circuit (DHW) at which it can operate for a long time without failures and damage. See "Heating circuit maximum pressure".

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

DHW max. T

The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.

Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

"Summer" mode

It is an operating mode designed for the warm season. In this mode, it works only to provide domestic hot water, and the heating is turned off. If the boiler is equipped with an outside temperature sensor, this sensor is also switched off in summer mode so that the heating does not turn on at night when the outside temperature drops.

Heated floor mode

The boiler has a special mode for underfloor heating systems.

Underfloor heating differs from conventional heating systems primarily by a lower coolant temperature — otherwise the floor could be too hot for comfortable use (plus, high temperatures are also undesirable for flooring and furniture installed on it). In addition, boilers with this function are distinguished by increased pump power. In order to ensure efficient circulation of the coolant through branched heating circuits that have rather high resistance.

Expansion vessel capacity

The capacity of the expansion tank supplied with the boiler.

The expansion tank is designed to drain excess water from the heating system when the total volume of liquid increases as a result of heating. It consists of two parts connected by a flexible membrane: in one, hermetically closed, there is air under pressure; in the other, excess water enters, compressing the membrane. In this way, a catastrophic increase in pressure in the heating circuit is avoided. The optimal volume of the expansion tank depends on several system parameters, primarily the volume and composition of the coolant; detailed recommendations for calculations can be found in special sources.

Mains water intake

The diameter of the pipe for connecting the pipe through which cold water is supplied to the boiler for heating and use in the hot water supply system.

Diameters are indicated in inches. It is allowed to connect a pipe of a different diameter through an adapter, but the best option is still a match in size. There are connection options 1/2", 3/4", 1" and 1 1/2".
Bosch Gaz 6000 WBN-24H RN often compared
Bosch Gaz 6000 WBN-24C RN often compared