Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Buderus Logamax U072-24K 24 kW vs NAVIEN Ace-24K Turbo 24 kW

Add to comparison
Buderus Logamax U072-24K 24 kW
NAVIEN Ace-24K Turbo 24 kW
Buderus Logamax U072-24K 24 kWNAVIEN Ace-24K Turbo 24 kW
from $598.21 up to $732.09
Outdated Product
from $461.02 up to $598.76
Outdated Product
User reviews
3
0
0
1
TOP sellers
Main
DHW capacity at Δt=30° - 11.4 L/min, at Δt=50° - 6.8 L/min. A light weight. Frost protection. Resistant to mains voltage fluctuations. Ability to work with liquefied gas.
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area192 m²180 m²
Additional equipment
Remote control unit
Technical specs
Heat output24 kW24 kW
Min. heat output7.2 kW
Power supply230 V230 V
Power consumption150 W150 W
Coolant min. T40 °С40 °С
Coolant max. T82 °С80 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar8 bar
Consumer specs
DHW min. T40 °С40 °С
DHW max. T60 °С80 °С
Performance (ΔT=25°C)13.8 L/min
Performance (ΔT ~30 °C)8.6 L/min
"Summer" mode
Warm start
Circulation pump
Control busOpenTherm
Boiler specs
Efficiency93.2 %92 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100 mm75/70 mm
Inlet gas pressure16 mbar13 mbar
Max. gas consumption2.8 m³/h2.58 m³/h
Expansion vessel capacity8 L
Expansion vessel pressure0.5 bar
Heat exchangercopper
Connections
Mains water intake1/2"1/2"
DHW flow1/2"1/2"
Gas supply3/4"1/2"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
 
frost protection
gas pressure drop
 
 
 
power outage
frost protection
More specs
Dimensions (HxWxD)700x400x299 mm695x440x265 mm
Weight34 kg28 kg
Added to E-Catalogdecember 2014august 2012

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Remote control unit

Remote control unit that allows you to control the boiler from another room. It can be connected both wired and wirelessly, often equipped with an electronic display to indicate operating modes, set temperature, emergency situations, etc. Many of these units are advanced devices with the ability to programme the operation of the boiler, for example, for a week; some models can be equipped with temperature sensors that automatically adjust the intensity of the boiler depending on the temperature in the room.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

DHW circuit max. pressure

The maximum pressure in the hot water circuit (DHW) at which it can operate for a long time without failures and damage. See "Heating circuit maximum pressure".

DHW max. T

The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.

Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Performance (ΔT=25°C)

The performance of a dual-circuit boiler in the DHW supply mode when the water is heated by 25 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain options ΔT — namely 25 °C, 30 °C and/or 50 °C. And it’s worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the ΔT=25 °C mode and produce at least warm water at 40 °C, the initial temperature of cold water must be at least 15 °C (15+25=40 °C). It is a rather high value — for example, in a centralized water supply system, cold water...reaches 15 °C, except in summer, when the water pipes warm up noticeably; the same applies to water supplied from wells. So this performance is a very conditional value. The boiler does not work so often with a temperature difference of 25 °C. Nevertheless, the data for ΔT=25°C is still often given in the specifications — including for advertising purposes since it is in this mode that the performance figures are the highest. In addition, this information may be useful if the boiler is used as a pre-heater, and heating to operating temperature is provided by another device, such as an electric boiler or instantaneous water heater.

Performance (ΔT ~30 °C)

The performance of a dual-circuit boiler in hot water mode when water is heated by approximately 30 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain ΔT — namely 25 °C, 30 °C and/or 50 °C. And it is worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the mode ΔT ~ 30 °C and give out at least warm water at 40 °C, the initial temperature of cold water should be about 10 °C (10 + 30=40 °C). A similar temperature can be found in wells in the warm season, and cold water in the ce...ntralized water supply system often warms up to 10 °C in the warm season. However, boilers, including dual-circuit boilers, are switched on mainly in cold weather, when the initial water temperature is noticeably lower. Accordingly, if the boiler is used as the main water heater, heating to the claimed temperatures (see "DHW min. T", "DHW max. T") often requires a greater ΔT than 30 °C, and the performance is less than indicated in this paragraph. But when operating in the preheating mode (when the water is heated to the desired temperature by an additional device like a boiler), this parameter describes the capabilities of the unit very reliably.

Warm start

Support for the warm start function by the boiler.

This function is found only in dual-circuit models (see "Type"): it accelerates the water heating for the domestic hot water system and ensures a constant leaving water temperature. To do this, the boiler automation monitors and controls the temperature of the water in the secondary heat exchanger of the boiler. The presence of a "warm start" affects the cost of the unit, but this is offset by the ease of use.
Buderus Logamax U072-24K often compared
NAVIEN Ace-24K Turbo often compared