Dark mode
USA
Catalog   /   Computing   /   Networking   /   NAS Servers

Comparison Synology DiskStation DS218+ RAM 2 GB vs Synology DiskStation DS218play RAM 1 GB

Add to comparison
Synology DiskStation DS218+ RAM 2 GB
Synology DiskStation DS218play RAM 1 GB
Synology DiskStation DS218+ RAM 2 GBSynology DiskStation DS218play RAM 1 GB
Compare prices 1Compare prices 1
TOP sellers
Main
It differs from DS218j and DS218play in the presence of an eSATA port, another USB 3.0 port and 2 GB of RAM (against 512 MB and 1 GB, respectively).
A modification without the "+" sign in the name is possible, which is distinguished by the absence of one USB 3.0 port, a USB 2.0 port instead of eSATA, as well as a processor and type of RAM.
Mountdesktopdesktop
Drives
3.5" drive slots22
Max. storage capacity36 TB32 TB
SATA 2
SATA 3
RAID
RAID 0
RAID 1
JBOD
Synology Hybrid RAID, Basic
RAID 0
RAID 1
JBOD
Synology Hybrid RAID, Basic
Connection
LAN ports11
LAN speed1 Gbps1 Gbps
USB 3.2 gen132
eSATA1
Features
Software features
Web server
FTP server
print server
multimedia (DLNA, iTunes, uPnP)
transcoding
BitTorrent client
mail server
database server
video surveillance server
backup
DDNS
domain integration
Web server
FTP server
print server
multimedia (DLNA, iTunes, uPnP)
transcoding
BitTorrent client
mail server
database server
video surveillance server
backup
DDNS
domain integration
Hardware
Operating systemDSMDSM
CPUIntel Celeron J3355Realtek RTD1296
CPU cores2 cores (2 threads)4 cores (4 threads)
CPU speed2 GHz1.4 GHz
TurboBoost frequency2.5 GHz
RAM2 GB1 GB
Max. RAM6 GB
ControlWEB-interface / appWEB-interface / app
General
Power consumption15 W17 W
Coolingactiveactive
Noise level18.2 dB19.9 dB
Size165x108x233 mm165x100x226 mm
Weight1.3 kg0.87 kg
Added to E-Catalogjanuary 2018january 2018

Max. storage capacity

This item characterizes the maximum capabilities of the device for connecting drives. This way you can understand how much maximum memory can be added to the NAS server.

USB 3.2 gen1

The number of USB 3.2 gen1 ports provided in the design of the NAS server.

USB connectors are used in computer technology to connect various external peripherals. In the case of NAS servers, we are most often talking about external drives — flash drives, hard drives, etc. In this way, you can transfer information from an internal drive to an external one (for example, for backup purposes) or vice versa, and even expand the total working volume of the server . In addition, on models with a VGA output (see below), a keyboard can also be connected to USB, and on models with a print server function (see "Software Features"), respectively, a printer. For added convenience, the USB connector can be placed on the front panel (see below).

Specifically, USB 3.2 gen1 (formerly known as USB 3.0 and USB 3.1 gen1) is the direct successor to USB 2.0 and is the most common USB standard today. This version provides data transfer rates up to 4.8 Gbps, as well as a fairly high power supply. At the same time, such connectors are backward compatible with peripherals using USB 2.0.

eSATA

The number of eSATA connectors provided in the design of the NAS server.

eSATA is a specialized interface for connecting external drives, primarily hard drives. It provides data transfer rates up to 2.4 Gbps — half that of USB 3.2 gen1, but significantly more than USB 2.0. And the clear advantage of such an interface is that it allows you to leave free USB ports that may be required for other devices. At the same time, eSATA drives are not very common nowadays, therefore, connectors of this type are provided in NAS servers quite rarely (and mostly in an amount of less than one).

CPU

The model and specifications of the processor installed in the NAS server. The speed of the device largely depends on these characteristics, primarily the clock frequency. However, in fact, this parameter is often more of a reference value: simple everyday tasks (say, FTP and print servers, see "Software Features") do not require high computing power. But for working with extensive databases (see ibid.), a “faster” processor may be useful.

CPU cores

The number of cores provided in the processor of the NAS server.

Initially, each core is a computing module designed to execute one sequence of instructions. Accordingly, multiple cores make it possible to work simultaneously with multiple data streams, which improves flow Rate - especially when processing multiple tasks at the same time. Also, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two sequences of commands at once. During the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with another sequence. As a result, the total number of threads in such processors is twice the number of cores; this scheme of work even more noticeably improves flow Rate.

It is also worth remembering that the overall capabilities of the processor are highly dependent on a number of other characteristics - microarchitecture, clock speed, support for special functions, etc. This means that a large number of cores does not in itself guarantee high flow Rate: for example, an inexpensive mobile processor on 4 cores may well be "weaker" than an advanced desktop chip with only 2 cores. However, if we are talking about a CPU with a similar specialization and clock speed, then a solution with a large number of cores ( 6 cores, 8 cores, or ev...en more) and multithreading support usually turns out to be more productive.

CPU speed

Clock speed of the processor installed in the NAS server.

The clock frequency is the frequency of the built-in oscillator, according to which all operations performed by the processor are synchronized. The higher this frequency, the more operations per second the CPU can perform and the easier it is to provide high computing power in it. However, note that the actual speed of the processor depends on many other features — the number of cores (see above), microarchitecture, volumes of the built-in cache memory, etc. So, only chips with similar characteristics and purpose can be directly compared by clock frequency ( desktop/mobile) and price category.

TurboBoost frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

RAM

The amount of RAM on the NAS server. Along with the processor, it is one of the indicators that determine the speed of the system — the more memory, the higher the computing power. However, in fact, it does not always make sense to chase large amounts of "RAM", which can reach 4 GB, 8 GB and even higher; see "Processor" for details.

Max. RAM

The maximum amount of RAM that can be installed on the NAS server. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them.
Synology DiskStation DS218+ often compared
Synology DiskStation DS218play often compared